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In this paper the cerebral blood flow (CBF) in resting state obtained from SPECT imaging is employed as a
hemodynamics descriptor to study the concurrent changes between brain structures and to build binarized
connectivity graphs. The statistical similarity in CBF between pairs of regions was measured by computing
the Pearson correlation coefficient across 31 normal subjects. We demonstrated the CBF connectivity matri-
ces follow ‘small-world’ attributes similar to previous studies using different modalities of neuroimaging data
(MRI, fMRI, EEG, MEG). The highest concurrent fluctuations in CBF were detected between homologous
cortical regions (homologous callosal connections). It was found that the existence of structural core regions
or hubs positioned on a high proportion of shortest paths within the CBF network. These were anatomically
distributed in frontal, limbic, occipital and parietal regions that suggest its important role in functional inte-
gration. Our findings point to a new possibility of using CBF variable to investigate the brain networks based
on graph theory in normal and pathological states. Likewise, it opens a window to future studies to link
covariation between morphometric descriptors, axonal connectivity and CBF processes with a potential diag-
nosis applications.

© 2012 Elsevier Inc. All rights reserved.
Introduction

The highly interconnected networks in the brain are capable of
generating and integrating information from multiple sources in
real time (Bassett and Bullmore, 2006). The characterization of the
global architecture of these cerebral networks is crucial to understand
how functional brain states emerge from the underlying structural
substrate, and how the system maximizes the complexity of its func-
tion minimizing the costs (Sporns and Kotter, 2004).

Recent studies based on graph theory have found that the brain
networks (at different spatial scales) follow the principle of the small-
world topology associated with high global and local efficiencies of par-
allel information processing, sparse connectivity between nodes, and
low wiring cost (Bassett and Bullmore, 2006). Several physiological
and anatomical variables acquired through diverse Neuroimaging tech-
niques have been successfully used in this purpose that conditional to
its natures they extract different features of the brain networks. For in-
stance, functional networks have been characterized by regional blood
oxygenation levels (BOLD: blood oxygen level dependent) based on
fMRI measurements (Achard et al., 2006; Bassettt et al., 2006; Wang
tment, Cuban Neuroscience
do Postal 6648, Cubanacán,
707.
@yahoo.com (L. Melie-García).

rights reserved.
et al., 2009), whereas electrical/magnetic signals recorded in sensors
over/near the scalp through EEG/MEG techniques provide the informa-
tion to study the coordinated electrical activity at the sources and
sensors spaces (Micheloyannis et al., 2006; Stam, 2004; Stam et al.,
2007). On the other hand, the DiffusionWeighted imaging (DWI) mea-
suring indirectly thewater diffusion in brain tissues, has been combined
with fiber tracing methodologies to reconstruct anatomical (axonal
connections) networks (Gong et al., 2009; Hagmann et al., 2007;
Iturria-Medina et al., 2008). In addition, brain morphological networks
are characterized using information of the synchronized co-variation
patterns in morphometric variables like cortical thickness, surface
area and volume (Bassett et al., 2008; He et al., 2007a; Sanabria-Diaz
et al., 2010) obtained from high resolution anatomical MRI.

It is important to point out that these physiological variables
(mentioned above) capture distinct properties of the interaction or
different aspects of the same interaction (mechanical, anatomical,
chemical, etc.) among cerebral regions revealing specific features of
the brain networks architecture. In addition, its capabilities to differ-
entiate normal from aberrant behaviors of human cerebral networks
have been evidenced (Bassett et al., 2008; He et al., 2008, 2009a,
2009b; Iturria-Medina et al., 2011b).

The cerebral blood flow (CBF) is a different physiological variable
used to study specific cerebral circuits principally the resting state
networks (RSN). CBF has been imaged by Single-Photon Emission
Computed Tomography (SPECT) and Positron Emission Tomography

http://dx.doi.org/10.1016/j.neuroimage.2012.08.082
mailto:lester@cneuro.edu.cu
mailto:lester_melie@yahoo.com
http://dx.doi.org/10.1016/j.neuroimage.2012.08.082
http://www.sciencedirect.com/science/journal/10538119


174 L. Melie-García et al. / NeuroImage 64 (2013) 173–184
(PET) both of which requires radioactive agents, as well as by the
Arterial spin labeling (ASL) MRI technique (Detre et al., 1992).

The first network-based study resting on CBF was developed by
Friston et al. (1993) using PET imaging. In this paper the distributed
brain systems associated with performance of a verbal fluency task
were identified through recursive Principal Component Analysis
(rPCA) methodology. rPCA method groups brain regions into a few
latent components. In particular, the brain regions within each com-
ponent are believed to have strong connectivity, while the connec-
tivity between components is weak.

The ASL technique has been utilized to measure dynamic, sponta-
neous CBF changes in resting state (Biswal et al., 1997; Chuang et al.,
2008; De Luca et al., 2006;Wu et al., 2009). The pioneer study developed
by Biswal et al. (1997) demonstrated that the spontaneous low frequen-
cy (b0.1 Hz) flow weighted fluctuations are highly synchronized within
themotor cortex. The RSNs were studied by De Luca et al. (2006), where
at least 5 distinct resting state networkpatternswere reproducible across
different subjects. These RSNs appear to reflect ‘default’ interactions re-
lated to functional networks recruited by specific types of cognitive pro-
cesses. More recently Chuang et al. (2008) developed a methodology to
reduce BOLD contamination in the CBF measurements to find connec-
tivity within the sensorimotor network. Additionally, Zou et al. 2009
showed the static and dynamic characteristics of the CBF in resting
state have high correlation (functional connectivity) between compo-
nents in the default mode networks (posterior cingulate cortex, thala-
mus, insula/superior temporal gyrus and medial prefrontal cortex)
(Zou et al., 2009). On the other hand, Viviani et al. (2011) found a corre-
spondence between BOLD and CBF connectivitymaps (by Pearson corre-
lation as an associationmeasure) in a large sample of subjects (N=265)
using a set of seed structures like the intraparietal sulcus, middle tem-
poral region and the posterior cingulated/precuneus. Surprisingly, we
found only one work using CBF measurements obtained by SPECT imag-
ing to characterize the functional connectivity (Okabe et al., 2003). Okabe
et al. (2003) studied the motor cortex to other brain regions during
repetitive transcranial magnetic stimulation (rTMS).

However, despite all studies developed to date one aspect is lack-
ing in the literature so far: the study of the topological organization of
the cerebral blood flow fluctuations in resting state. In other words,
the topological features of the cerebral networks based on fluctua-
tions of CBF hemodynamic variable have not been characterized yet
in terms of the graph theory.

Additionally, SPECT imaging has never been used to characterize
global brain networks while this technique provides valuable infor-
mation to describe hemodynamic processes interactions between
near and anatomically distant brain structures. In particular SPECT
has been recognized as a reliable technique to measuring brain
blood flow-based hemodynamics with a large number of applica-
tions at lower cost than PET (DeKosky and Scheff, 1990; Holman
and Tumeh, 1990; Wintermark et al., 2005).

In the present study, we proposed to characterize CBF concurrent
changes between pairs of brain regions as a new approach to study
the brain networks. The statistical similarity between two regions was
measured by computing the Pearson correlation coefficient.We explore
for the first time the topological properties (global and local) of the CBF
networks in resting state in a normal cohort of subjects. Our study could
be another step to understand the organization of the human brain
networks using a physiological variable barely explored. Next sections
provide details about our study and its novelty.

Materials and methods

Subjects

Anumber of 31 right-handed healthy subjects (M) (mean age 60.32;
range 50–77 years; standard deviation 6.6, 14 males and 17 females,
mean instructions years 13.77).
MRI acquisition: high resolution anatomical imaging

For all subjects, a 3D high resolution T1-weighted anatomical image
was acquired using a MRI scanner Siemens Symphony 1.5 T (Erlangen,
Germany). A MPRAGE pulse sequence covering the whole brain was
used with the following parameters: 160 contiguous slices of 1 mm
thickness in sagittal orientation; in plane FOV=256×256 mm2, andma-
trix size 256×256 yielding an in plane spatial resolution of 1×1 mm2

and voxel size of 1×1×1 mm3. The echo time, repetition time and inver-
sion time were set to TE/TR/TI=3.93 ms/3000 ms/1100 ms with a flip
angle FA=15°.

SPECT acquisition

SPECT imaging was performed with a double-head system (DST Xli,
Sopha Medical Vision, France) equipped with ultra-high-resolution
fan-beam collimators. The measured tomographic resolution for 99mTc
was 8.5 mm in the center of the image at the fixed radius of rotation of
150 mm. The imaging was started 10 min after injection of 555 MBq
of 99mTc-ethyl cysteinate dimer into the antecubital vein of the right
arm under resting condition (supine, eyes open, dimly lit quiet room).
Projection data were obtained for each camera in a 128×128 format
for 64 angles at 26 s per angle. Total counts were equal or greater than
5×106. A Butterworth filter was used for image back-projection
reconstruction of SPECT images (cutoff frequency=0.026 cycle/cm
and order=7). Attenuation correction was performed using Chang's
method (Chang, 1978) with attenuation coefficient μ=0.085 cm. The
reconstructed images have in-plane spatial resolution of 128×128
pixels, yielding a voxel size of 3.5 mm×3.5 mm×3.5 mm. SPECT and
MRI were carried out with a maximum interval of one week.

Data preprocessing: CBF matrix computation

SPECT imageswere corrected for partial volume effect (PVE) using the
modified Müller–Gartner voxel-based method (Quarantelli et al., 2004).
All preprocessing steps for PVE correction were carried out by the
2010-version of the ‘PVE-lab’ software (http://pveout.area.na.cnr.it).
Each PVE-corrected SPECT image was coregistered onto its respective
native GM segment using the normalized mutual information proce-
dure with trilinear interpolation by SPM8 (http://www.fil.ion.ucl.ac.
uk/spm). Coregistered SPECT images were normalized to MNI
space including the 12 mm smoothing kernel. The resulting SPECT
images were then scaled by the mean gray matter activity from
vermis (cerebellum), which were automatically extracted using the
IBASPM toolbox (Individual Brain Atlases using the Statistical Paramet-
ric Mapping (SPM) available at http://www.fil.ion.ucl.ac.uk/spm/ext/
#IBASPM) (Alemán-Gómez et al., 2006) and the anatomical labeling
template (Tzourio-Mazoyer et al., 2002). At last step, Lassen correction
(back diffusion model for linearization) was applied to eliminate the
underestimation of regional CBF due to the limited first-pass extraction
of the tracer or back diffusion of the tracer from the brain (Lassen et al.,
1988). These corrected SPECT images were used to study CBF networks.

Using IBASPM toolbox the GM tissue of the T1- weighted images
were automatically segmented into a parcellation with N=90 anatom-
ical structures using the AAL atlas (Tzourio-Mazoyer et al., 2002). More
details about the atlas structure names can be found in Supplementary
Material A. The parcellation process was conducted to the SPECT native
space, where the mean CBF in all anatomical structures were calculated.
This process was performed for all subjects yielding a matrix with ‘M’

rows (number of subjects) by ‘N’ columns (number of structures) of
CBF values for the AAL parcellation (Fig. 1 represents schematically
the CBF data matrix construction).

Connectivity matrix construction for CBF
We defined a connection as statistical associations in CBF between

brain regions for a particular parcellation (see Fig. 2). The statistical
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similarity between two regions was measured by computing the Pear-
son correlation coefficient, across subjects. Hence, the interregional
correlation matrix (N×N, where N is the number of brain regions,
here N=90) of such connections was obtained for all pairs of anatom-
ical structures. The element cij is the value of the Pearson correlation
between regions i and j (see Fig. 2). Self-connections were excluded,
implying a diagonal black line in the symmetric matrix. Only those cor-
relation coefficients statistically significant (p valueb0.05) were taken
into account for studying the CBF network. Prior to the correlation anal-
ysis, a linear regressionwas performed at every region to remove the ef-
fects of age, gender, age–gender interaction, and overall CBF (sumof the
all structure's CBF). For the CBF matrix, the residuals of this regression
was then substituted for the raw values respectively (see Fig. 2, step 2).

Similar to our previous paper based on morphological connectivity
(Sanabria-Diaz et al., 2010) we obtained bootstrapping samples of the
connectivitymatrix selecting a random subset of the total number of sub-
jects to compute the Pearson correlation coefficient. Through this proce-
dure, it was possible to study the changes of network properties taking
into account the variability of having different combinations of subjects
in the sample. In particular we acquired 300 bootstrap samples using a
subset that contains 80% of the total number of subjects (24 subjects).

The connectivity matrices were thresholded to create sparse graphs
(Fig. 2, step 5). Rather than restricting our analysis to a binarized
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Fig. 1. Flowchart of the CBF matrix construction. 1) Representation of the individual CBF/Ana
parcellations for the M subjects are obtained. 3) The mean CBF was computed for the ‘N’ anat
array, given the final CBF matrix denoted by ‘P’ with ‘M’ rows by ‘N’ columns.
graph obtained by applying a single threshold value, we explored the
properties of the graphs over a range of thresholds to explore metrics
with different sparseness. The threshold values Rkwere calculated to ob-
tain different matrix sparseness that we denote as ‘sparsity degree’. A
sparsity degree of 0.9 means that 90% of the connectivity matrix is off,
and only the highest 10% of the connectivity values were taking into ac-
count. The Rk were computed for sparsity degrees ranging from 0.5 to
0.9, in step of 0.02, yielding a set of 21 threshold values. This procedure
normalizes the networks to have the same number of nodes and edges,
allowing the examination of the relative network properties obtained. In
these matrices (see Fig. 2, steps 5 and 6), an element was set to 1 if, the
absolute value of the CBF correlation between two regions i and j denot-
ed by cijwashigher than Rk; |cij|>Rk and 0 otherwise. This binarized con-
nectivity matrix captures the underlying connection patterns of the
human brain common to the population sample under study.

Graph analysis to characterize brain CBF connections
A great number of natural systems can be represented by complex

networks. Graph Theory is usually considered an attractive model for
the mathematical treatment of brain network connectivity. In general,
a complex network can be represented as a graph G=[N, K], the com-
ponents of this system are called nodes (N) and the relations or connec-
tions between them are called edges (K) (Boccaletti et al., 2006). In our
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specific case, the brain network is considered unweighted because all
edges are assumed to indicate relations of equivalent strength between
nodes, and undirected, since it summarizes symmetric relations (such
as correlations) between nodes.

We estimated the most important local and global metrics of the
graph G. The computed global network properties were: small-world
attribute (sigma), cluster index, local and global efficiencies and charac-
teristic path length. On the other hand to describe local properties the
betweenness centrality measure was used. The description of these
graph attributes can be found elsewhere (Rubinov and Sporns, 2010).
Results

Connections between interhemispheric homotopic cerebral regions

Using the methodology described above, the matrix of CBF concur-
rent changes between brain anatomical structures was estimated. The
existence of connections between homotopic interhemispheric cerebral
regions which is in accordance with the existing anatomical knowledge
(see Fig. 3) (Gómez-Padrón et al., 1985; Standring, 2004; Witelson,
1989) and previous anatomical, functional and morphological connec-
tivity studies using graph theory (He et al., 2007a, 2008; Mechelli et al.,
2005; Salvador et al., 2005; Stark et al., 2008; Yao et al., 2010) should
be noted. It is important to point out that these connections, in special
between homologous regions, presented the highest correlation values
(see Fig. 4).
CBF synchronized co-variations among brain anatomical structures

Table 1 shows the 15 strongest CBF co-variations among anatom-
ical regions defined in the AAL atlas. Most of them were between
pairs of homotopic regions mainly associated with several parts of
corpus callosum. In addition, we found these connections were
more numerous than those between non-homotopic regions. This
result is consistent with previous resting-state network studies
(Salvador et al., 2005; Stark et al., 2008) showing a robust correlated
spontaneous activity between homotopic regions. The strongest
intrahemispheric CBF co-variations are related with several major
white matter tracts (e.g., superior longitudinal fasciculus). These
long-range connections might play roles as shortcuts to ensure
short mean path lengths in the small-world networks (Hilgetag and
Kaiser, 2004). Also we found pairs of regions with high CBF co-
variations that are connected via short-range white matter fiber bun-
dles like the arcuate fasciculus.

Global properties of the CBF network

Recently, several papers studying brain networks features based on
different neuroimaging modalities (MRI (sMRI), fMRI, EEG, MEG) and
graph theory have demonstrated the cerebral functions emerges from
the topology of the network as awhole. In special, a ‘small-world’ topol-
ogy is observed in the human brain networks exhibiting (high clustering
and short path lengths) a set of hub regions predominantly located in
heteromodal association cortical areas (Achard and Bullmore, 2007;



Fig. 3. The CBF connectivity matrix obtained by calculating Pearson's correlation between regional CBF across subjects. The color bar indicates the correlation coefficient value. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Achard et al., 2006; Bassett et al., 2008; Bassettt et al., 2006; Deuker
et al., 2009; Eguiluz et al., 2005; Gong et al., 2009; Hagmann et al.,
2008; He et al., 2007a, 2007b; Liu et al., 2008; Micheloyannis et al.,
2006; Salvador et al., 2005; Stam, 2004; Stam and Reijneveld,
2007; Stam et al., 2007; van den Heuvel et al., 2008).

In present study, the CBF network properties (clustering index, char-
acteristics path length, local efficiency, global efficiency and sigma)were
calculated over a range of sparsity values (from0.4 to 1.0) (seeMaterials
and Methods section for details) as is illustrated in Fig. 5. As expected,
the CBF network exhibited small-world attributes overall range of spar-
sity degree values (Fig. 5, panel D).

Nodal properties of the CBF network

In order to study the nodal properties (betweenness centrality) the
CBF network, was constructed at a sparsity degree of 89%. This selec-
tion has been used by previous papers and ensures that all regions
have at least one connection, minimizing the number of false-positive
paths and optimizing interregional correlation strengths (see Fig. 6
and Supplementary Material C) (Bassettt et al., 2006; He et al., 2008;
Yao et al., 2010). Next sections show the principal findings in this
nodal attributes study.

Nodal betweenness centrality

We calculated the normalized betweenness centrality (NBC) of each
region in the CBF network shown in Fig. 6. Cortical regions with high
NBC are important in managing the flow of information across the
network due to they are more likely to reside on the shortest paths
between other regions. We found 20 structures with NBC values higher
than 1.51 (22% of cerebral regions) with a maximum of 3.84 in the
frontal middle orbital of the right hemisphere (see Supplementary
Material C for full regions list and its respective normalized between-
ness centrality values). These regions involve the cingulate cortex, as
well as portions of frontal, inferior and superior parietal cortices, and
middle and superior occipital cortices (Fig. 6). It was observed that
these brain structures were equally distributed in both cerebral hemi-
spheres. Finally, we also found, as expected, an increment of the mean
betweeness centrality of the CBF network with the sparsity degree.

Hub regions

In general, hubs in a particular network are identified as thosewith a
betweenness centrality (BC) values at least 1.5 times greater than the
average BC (bBC>) of the network (i.e., BC>1.5*bBC>). In our case,
the CBF network presents twenty hub regions (for details, see Table 2).
These included eight regions in the paralimbic cortex (cingulate gyrus,
insula), six belonging to the heteromodal ones (precuneus, superior
frontal gyrus), and four to the unimodal association cortex (superior
occipital gyrus, cuneus). The other two hub regions were localized in
the primary cortex (postcentral gyrus, calcarine fissure and surrounding
cortex). Based on the subdivision of the cerebral cortex into five major
functional subtype's areas, hubs in the CBF network showed an asym-
metric pattern. Particularly, the heteromodal hubs prevailed in the left
hemisphere contrary to the paralimbic and primary ones thatwere prin-
cipally localized in the right hemisphere. On the other hand, hubs
belonging to the unimodal cortex were equally distributed in both
hemispheres.
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This spatial distribution of hubs is in linewith previous studies using
other connectivity analysis (anatomical, functional and morphological)
showing the existence of structural core regions positioned on a high
proportion of shortest paths within the network (Achard et al., 2006;
Bullmore and Sporns, 2009; Chen et al., 2008; Gong et al., 2009;
Hagmann et al., 2008; He et al., 2007a, 2008, 2009b; Iturria-Medina
et al., 2008; van den Heuvel and Sporns, 2011). Remarkably, these
regions also agree with the ones obtained in previous vulnerability
analysis (to identify hubs) like in Iturria-Medina et al. (2008). In con-
trast, the hubs with smallest NBC included regions of the paralimbic
and unimodal cortices such as the olfactory, occipital inferior and
orbitofrontal regions (for details, see Supplementary Material C). Simi-
lar to the result reported in the previous subsection with respect to the
mean betweenness centrality, the number of hubs increases with the
sparsity degree.

Discussion

In this work, the CBF synchronized co-variations among cerebral
structures were used to study the human brain networks topology
in resting state. As in previous papers (Bassett et al., 2008; He et al.,
2008, 2009b) the behavior of the network properties (clustering
index, characteristic path length, small-world attributes (sigma) and
local and global efficiency) were studied in a range of sparsity values.
The principal contributions of this paper can be summarized as
follows:

1. The CBF is a physiological variable that provides valuable informa-
tion to study the topological organization of human brain functional
networks in resting state.

2. The pattern of the concurrent CBF fluctuations among cerebral re-
gions shows a topology with ‘small-world’ attributes. This means
that CBF network present an optimal balance between local spe-
cialization and global integration processes.

3. The principal CBF concurrent fluctuations are related to neuroana-
tomical pathways of the human brain (e.g. superior longitudinal
fascicle (SLF) and corpus callosum (CC)).

4. The strongest synchronized fluctuations in CBF were found be-
tween homologous cortical regions (connected through CC).

5. The existence of a functional core (hubs) positioned on the high
proportion of shortest paths within the CBF network. These were
anatomically distributed in frontal, limbic, occipital and parietal
regions suggesting its important role in functional integration.
This fact has been previously reported studying anatomical (struc-
tural core) and functional networks based on DWI and fMRI neuro-
imaging techniques.

Some of these findings deservemore attention andwill be discussed
in the following subsections.



Table 1
The 15 strongest interregional blood flow correlation values (connections) and their approximate associated fiber tracts.

No Region A Region B Class R Approximate associated fiber tracts

1 Paracentral Lobule L Paracentral Lobule R SIH 0.89 Genu and anterior part of the body of CC2

2 Heschl gyrus L Rolandic operculum L IH 0.88 Superior longitudinal fasciculus (arcuate fascicle) 5

3 Precuneus L Precuneus R SIH 0.84 Part of the body and the splenium of CC1,2

4 Supplementary motor area L Supplementary motor area R SIH 0.83 Anterior midbody (anterior half) of the CC1,3

5 Middle frontal gyrus, (orbital part) L Middle frontal gyrus, (orbital part) L IH 0.81 Superior longitudinal fasciculus (U fibers)4

6 Anterior cingulate and paracingulate gyri L Anterior cingulate and paracingulate gyri R SIH 0.81 CC7

7 Postcentral gyrus R Precentral gyrus R IH 0.80 Arcuate fibers7

8 Pallidum R Putamen R IH 0.78 Striatopallidal fibers6

9 Median cingulate and paracingulate gyri L Median cingulate and paracingulate gyri R SIH 0.77 CC4, 7

10 Precuneus L Paracentral Lobule R NIH 0.77 N/A
11 Anterior cingulate and paracingulate gyri L Median cingulate and paracingulate gyri R NIH 0.76 CC4

12 Superior frontal gyrus, (dorsolateral) L Superior frontal gyrus, (dorsolateral) R SIH 0.76 Genu and anterior part of the body of CC1,2

13 Paracentral Lobule L Precuneus L IH 0.75 Superior longitudinal fasciculus (SLFI)5

14 Cuneus L Cuneus R SIH 0.75 Inferior part of the splenium of CC1,2,3

15 Superior occipital gyrus L Superior occipital gyrus R SIH 0.74 Posterior part of the splenium of CC1,2,3

L.: Left R.: Right CC: corpus callosum N/A: unclear or ambiguous WM tracts.
Note: List of the 15 strongest connections (descending order by correlation coefficient values). These connections were classified into intrahemispheric (IH), symmetrically
interhemispheric (SIH) and asymmetrically interhemispheric (NIH). Column R denotes the correlation coefficients between regions. Approximate associated fiber tracts between
each pair of regions observed in this study is listed in the right most column. (Full names of anatomical structures can be found in Supplementary Material A).
1Hofer and Frahm, 2006; 2Huang et al., 2005; 3 Zarei et al. 2006; 4 Wakana et al. 2004; 5 Makris et al. 2005; 6 Mesulam, 2000; 7Jellison et al. 2004.
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The CBF can be used as a physiological variable to reveal the complex
architecture of the human brain networks in resting state

Why could CBF be a suitable physiological descriptor to study prop-
erties of the cerebral networks in resting state? The answer to this ques-
tion could be found by means of the well-known neurovascular
coupling phenomenon.

It is known that local cerebral blood flow is regionally heteroge-
neous. The varied pattern of CBF is neither randomnor related to the an-
atomic organization of the cerebral vasculature or to differences in the
innervation patterns of the cerebral vessels. Neuronal activity is the
principal energy-consuming process in the brain. Local cerebral blood
flow adjusts to the level of energy generation; therefore, it is the activity
in the neuronal circuits that is the major determinant of variations and
regional patterns of cerebral blood flow. From the prospect of energy
consumption, the human brain is a large energy consuming organ that
represents about 2% of body weight, while accounting for 20% of the
total body energy consumption. Furthermore, it is noteworthy that
much of the brain's energy consumption is not attributed to external
stimuli but to intrinsic or resting state activity (Raichle, 2006).

Therefore studying the synchronized CBF fluctuations between
anatomical regions is able to have a functional connectivity measure
among these brain sites in resting state.

On the other hand, since CBF is a single physiological parameter
(vs. BOLD which is a composite of several parameters) and is probably
more closely related to cerebral metabolism than BOLD, CBF data may
be more physiologically relevant than those from BOLD (Zou et al.,
2009). Functional connectivity studies usingMRI have been almost exclu-
sively performedbymeasuring thefluctuations in the BOLDweighted sig-
nal. BOLD signal fluctuations represent combined changes in blood
oxygenation, cerebral blood volume, cerebral blood flow (CBF) andmeta-
bolic rate of oxygen (Buxton et al., 2004). Besides, themagnitude of BOLD
fluctuation is also dependent onMRI specific parameters, such asmagnet-
ic field strength and echo time (TE). In contrast, functional connectivity
mapping based on CBF provide a quantitative estimate of the fluctuations
in terms of a single physiological parameter (Chuang et al., 2008).

Cerebral blood flow co-variations and its associated neuroanatomical
pathways

In this study, it was found patterns of covariations in CBF between
anatomical brain regions. One issue of interest is whether these set of
concurrent fluctuations are also related to known neuroanatomical
pathways of the human brain. Findings in Varkuti et al. (2011) support
this idea. The authors in this paper reported that anatomical connectiv-
ity and CBF are systematically linked throughout a number of brain re-
gions. These results constitute a starting point for further research on
the role of homology in the formation of functional connectivity net-
works and on how structure/function relationships can manifest in the
form of such trait interdependency. Additionally, such coupling would
constitute the manifestation of a supply-and-demand-principle — the
metabolic demand being shaped by connectivity — in the formation of
a structure/function relationship (Varkuti et al., 2011).

Here, we matched the 15 pairs of regions with the highest concur-
rent changes to the approximate associated anatomical connections
obtained from previous human and animal diffusion imaging and trac-
ing studies (see Table 1). We found an interesting set of regions with
high covariations in CBF following the interhemispheric middle line of
the brain. These anatomical regions are present from the occipital lobe
(superior occipital gyrus), parietal (precuneus), supplementary motor
area to frontal cortex (superior frontal gyrus). This pattern could be
linked to the so-called rich-club phenomenon (van den Heuvel and
Sporns, 2011) that assumes the existence of a number of highly
connected and highly central hub regions that play a key role in global
information integration between different parts of the network. Our hy-
pothesis rest on that themaximal covariation in CBF across these partic-
ular set of inter-hemispheric homologous regions show indirectly their
metabolic cost in order to support a global connectivity of the brain net-
work as a kind of scaffolding. These ideas are in line with previous
human brain functional studies that have demonstrated strong func-
tional correlations between bilaterally homologous regions (Hampson
et al., 2002; Lowe et al., 1998;Wanget al., 2006) and a similar symmetric
clustering connectivity pattern (Salvador et al., 2005). The high co-
variations values (Pearson correlation coefficients) present between
homologous regions can be explained by the associations of these
regions through the corpus callosum (CC), a crucial white matter
structure providing communications between both brain hemispheres.
The anatomical localization across different lobes agrees with the transit
of inter-hemispheric pathways connecting homologous brain areas
(Hofer and Frahm, 2006; Huang et al., 2005; Zarei et al., 2006) and the
in vivo parcellation of CC into several major subdivisions such as the
genu, body and splenium.

We also observed a significant covariation in blood flow between
intrahemispheric structures with different patterns for the left and



Fig. 5. Global network properties as function of sparsity degree. (A) The clustering index decreases as the sparsity degree increases (B). The characteristic path length increases as
sparsity degree increases. (C) Local efficiency and global efficiency (E) decrease with sparsity degree. (D) Small-world attribute increases with sparsity degree. (F) Percent of
detected homotopic callosal connections.
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right hemispheres. Previous studies have reported structural and func-
tional asymmetries in several regions of human cortex, including frontal,
temporal, and occipital regions (for a review, see Toga and Thompson,
2003). Furthermore, Mechelli et al. (2005) have also demonstrated
interregional asymmetric patterns of associations in gray matter con-
centration, providing further support to our finding of different con-
nection patterns between both brain hemispheres. More recently,
Iturria-Medina et al. (2011a) showed in both human and nonhuman
primate brains, in terms of the graph theory, that the right hemisphere
is significantly more efficient and interconnected than the left one,
whereas the left hemisphere presents more central or indispensable
regions (hubs) for the whole-brain structural network than the right
hemisphere.

In the present work, the anatomical connections between left hemi-
sphere regions (e.g., heschl gyrus–rolandic operculum) are associated
with the superior longitudinal fascicle (SLF) linking the caudodorsal pre-
frontal cortex with the premotor, supplementary motor, and superior
parietal regions (Makris et al., 2005; Wakana et al., 2004). The CBF con-
current fluctuations between adjacent areas (e.g., middle frontal gyrus–
superior frontal gyrus, orbital part) are examples of thepresence of short
association fibers (e.g., U-fibers) that provide the ‘wiring’ (anatomical
substrate) which these areas could use to interact each other (Petrides,



BETWEENNESS CENTRALITY

Fig. 6. Betweenness centrality values distribution in the cerebral cortex. This result was obtained for a sparsity degree of 89%. The spheres in green represent the cortical regions and
its diameter the betweenness centrality value. The higher betweenness centrality index the larger the sphere's diameter. Full structure names and its respective normalized be-
tweenness centrality values can be found in Supplementary Material C. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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2005; Wakana et al., 2004). Additionally, we also observed strong CBF
synchronized fluctuations in the right hemisphere between subcortical
nuclei (e.g., pallidum-putamen) connected via striato-pallidal fibers.
For example, the lateral pallidum and the dorsal parts of the medial
pallidum receive their striatal input predominantly from the caudate
and putamen.

As noted above, we found CBF covariations between regions
linked through short-range/local connections (associated through
short fibers for instance arcuate or U-fibers, that constitute the local
circuitry), long-range connections (related to commissural fibers:
inter-hemispheric connections) and intra-hemispheric association
fibers (e.g., SLF) (Wakana et al., 2004). Recent functional connectivity
studies based on fMRI have demonstrated the presence of local and
long-range connections in the human brain (Achard et al., 2006;
Salvador et al., 2005) consistent with our results.

Summarizing, the CBF network analysis provides evidences on the
true anatomical or functional connections among neural processing
units and their activities.

Attributes of the cerebral blood flow network in resting state

This is the first study, to our knowledge, that demonstrates the pres-
ence of large-scale blood flow connectivity patterns in the human brain
using SPECT imaging. Fig. 5 shows, as in previous studies (Bassett et al.,
2008; He et al., 2008, 2009b), the dynamic of the network properties
curves (clustering index, characteristic path length, small-world attri-
butes (sigma), and local and global efficiency) in a range of sparsity de-
grees. We found that the human CBF network present ‘small-world’
attributes. This fact has been documented by the existing mammalian
cortical networks derived from chemical tracing methods (Sporns and
Zwi, 2004) and the recent human structural networks derived from dif-
fusion MRI and MRI-based cortical thickness that have consistently
exhibited small-world attributes (Bassett et al., 2008; Gong et al.,
2009; Hagmann et al., 2007; He et al., 2007a; Iturria-Medina et al.,
2008; Sanabria-Diaz et al., 2010). Additionally, recent studies have
demonstrated small-world properties in human brain functional net-
works using neurophysiological data, coming from fMRI (Achard et al.,
2006; Eguiluz et al., 2005; Salvador et al., 2005), EEG (Micheloyannis
et al., 2006; Stam et al., 2007), and MEG neuroimaging modalities
(Stam, 2004).

In the present study, it was observed small-world properties were
salient atmedium-high sparsity degrees. Previous computational simu-
lations have demonstrated that small-world topologies emerge when
networks are evolved for high complexity (Sporns et al., 2000).

Summarizing, our results provide a comprehensive description of
the network arisen from CBF concurrent fluctuations among brain re-
gions. The small-worldness model showed by the CBF network indi-
cates the high local interconnectivity or cliquishness and short mean
distance between regions revealing a high efficiency in the communica-
tion between different parts in the network.
Hub regions and bridge connections in the CBF network

Based on normalized betweenness centrality measure, 20 hub re-
gions were identified in the CBF network (see Table 2). We classified
these regions in primary, unimodal, heteromodal, and paralimbic
hubs. This result is compatible with previous reports studying brain
functional, anatomical and morphological networks. It suggests that
the spatial distribution of hubs is conserved and it is an invariant
parameter of brain network organization at different scales and
neuroimaging techniques (Achard et al., 2006; Bassett et al., 2008;
Hagmann et al., 2008; He et al., 2007a; Iturria-Medina et al., 2008;
van den Heuvel and Sporns, 2011).



Table 2
Principal hub regions classified as the primary, unimodal, heteromodal, paralimbic, limbic, or subcortical as described in Mesulam (2000).

Regions NBC Localization Class

Middle frontal G (orbital part). R 3.84 Frontal lobe, orbital surface Paralimbic
Superior frontal G (medial). L 3.23 Frontal lobe, medial surface Heteromodal
Anterior cingulate G. L 2.99 Limbic lobe Paralimbic
Inferior parietal. L 2.93 Parietal lobe Heteromodal
Superior frontal G (dorsolateral). L 2.47 Frontal lobe Heteromodal
Median cingulate G. R 2.34 Limbic lobe Paralimbic
Postcentral G. R 2.31 Central region Primary
Anterior cingulate G. R 2.29 Limbic lobe Paralimbic
Superior frontal G (medial orbital). R 2.28 Frontal lobe, orbital surface Paralimbic
Middle occipital G. L 2.13 Occipital lobe, lateral surface Heteromodal
Superior occipital G. R 2.04 Occipital lobe, lateral surface Unimodal
Cuneus. L 2.03 Occipital lobe, medial and inferior surfaces Unimodal
Calcarine fissure. R 1.89 Occipital lobe, medial and inferior surfaces Primary
Insula. L 1.87 Insula Paralimbic
Superior parietal G. R 1.79 Parietal lobe, lateral surface Unimodal
Rolandic operculum. L 1.71 Central region Unimodal
Precuneus. R 1.62 Parietal lobe, medial surface Heteromodal
Middle frontal G (orbital part). L 1.62 Frontal lobe, orbital surface Paralimbic
Inferior frontal G (triangular part). L 1.56 Frontal lobe, lateral surface Heteromodal
Parahippocampal G .R 1.51 Limbic lobe Paralimbic

L.: Left R.: Right G.: Gyrus.
NBC: normalized betweenness centrality.
Note: List of the hub anatomical regions (descending order of normalized betweenness centrality). These regions were classified into primary, unimodal, heteromodal, paralimbic,
limbic, or subcortical as described in Mesulam (2000). See the anatomical structures localization using the AAL atlas described in Tzourio-Mazoyer et al. (2002).
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There were hub regions found in the fronto-parietal regions,
precuneus and superior frontal and parietal cortices, extending from
the cortical midline into specific subcortical regions. Our results are
in line with previous reports showing the central hub role of neo-
cortical precuneus and superior frontal regions (Hagmann et al.,
2008; Sporns et al., 2007; van den Heuvel et al., 2009) and the exis-
tence of a densely connected structural core in posterior medial cortex
containing precuneus and the superior parietal cortex (Hagmann et al.,
2008).

Brain regions as cingulate cortex, precuneus, cuneus, and the infe-
rior and superior parietal cortices have also been found exhibiting el-
evated fiber counts and densities (node degree and strength). They
are most resistant to the erosive procedures of k-core and s-core de-
composition having a high topological centrality (Hagmann et al.,
2008). The central structural embedding of posterior medial cortex
in the human brain is consistent with a series of physiological find-
ings including high levels of energy consumption and activation at
rest (Raichle et al., 2001) and significant deactivation during goal-
directed tasks (Fox et al., 2005; Raichle et al., 2001; Shulman et al.,
1997). Activation of the precuneus (Cavanna and Trimble, 2006)
and other cortical midline structures (Northoff and Bermpohl, 2004)
has been linked to self-referential processing and consciousness. Sim-
ilarly some of anatomical regions (precuneus, lateral and medial pari-
etal cortex, and the medial prefrontal cortex) has been identified as
part of human default network that comprises a set of interacting
subsystems connected by hubs (Buckner et al., 2008; Fox and
Raichle, 2007; Fox et al., 2005; Greicius et al., 2003).

However, in our study it was evident that hub regions (following the
cortical systems classification by (Mesulam, 2000)) did not distribute
topologically identical, which predominately were heteromodals (30%,
precuneus and inferior frontal gyrus, pars triangularis) and paralimbics
(40%, cingulate gyrus and insula). The unimodal (cuneus and superior
parietal lobe) and primary (postcentral gyrus and calcarine fissure)
hubs were less represented with a 20% and 10% respectively.

Our results showed left asymmetric representation of hub regions
for the heteromodal cortex that play a central role receiving convergent
inputs from multiple cortical regions and are most closely involved in
perceptual elaboration and motor planning. On the other hand the
paralimbic regions with right asymmetric topology play a critical role
in channeling emotion and motivation to behaviorally relevant motor
acts, mental content and extrapersonal events (Mesulam, 2000). In
line with previous findings in Iturria-Medina et al. (2011a, 2011b) we
suppose that hub regional asymmetries indicate that left hemisphere
presents more central or indispensable regions for the whole-brain
structural network than the right one. Since the connectivity of a given
region is related to its cellular characteristics such as cell packing density,
cell size, and number of cortical neurons (Costa and Sporns, 2005; Lerch
et al., 2006), blood flow asymmetries of the cortex might be related to
hemisphere specific functional specializations and metabolic demand,
which is based on the high correspondence between our results and
well-known structural and functional regional asymmetries seems to
support the fact that the left hemisphere is ‘regionally’more specialized
than the right one. In terms of functional principles, these patterns
appear to support the fact that the left hemisphere has a leading role
for highly demanding specific process, such as language and motor
actions, which may require dedicated specialized networks whereas
the right hemisphere has a leading role for more general process, such
as integration tasks.

Furthermore, primary regions as Calcarine fissure and surround-
ing cortex are represented as hub in the right hemisphere. In this re-
spect, Cole et al. (2010) using resting state fMRI connectivity analysis
show several visual regions were among the most globally connected.
This may reflect the privileged placement of visual processing in the
human brain (Ungerleider and Haxby, 1994).

Indeed, our analysis revealed the hub regions to be a distributed
set of nodes participating in the default mode network (e.g., cingulate
cortex/precuneus, medial orbitofrontal cortex), the salience network
(e.g., insula, anterior cingulate cortex), the visual (cuneus) networks,
and to some extent the executive control network (e.g., superior fron-
tal and left superior parietal). One plausible explanation for the above
different hub classification regions might be the tendency of the brain
to provide a certain level of resilience to its core, in case of malfunc-
tion of one of its key hubs, regardless of a higher cost of the needed
white matter wiring (Kaiser et al., 2007). As the hub regions are be-
lieved to handle multimodal or integrative function, their damage
could dramatically affect the stability and efficiency of the network
(Achard et al., 2006; Sporns and Zwi, 2004). In accordance with this
view, our results confirmed that ‘lesions’ in the hubs lead to signifi-
cantly higher changes of the path lengths as compared with ‘lesions’
in nonhubs.
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Further considerations and future work

Some issues should be addressed in future works. The use of high
resolution parcellations for an exhaustive study of the brain parcellation
influences the properties of the CBF networks. Pearson correlation was
adopted instead of partial correlation analysis here. The partial correla-
tion analysis could not be performed because the sample size was not
large enough for a robust estimation of this measure. The recruitment
of subjects to perform SPECT experiment is difficult; therefore in the fu-
ture this study should be performed for a second time to test if the CBF
network properties remain using a higher number of subjects. As we
recommended in previous study at this point (Sanabria-Diaz et al.,
2010), it is important to answer two main questions: (1) how many
subjects are needed to obtain reliable results? (2) Are comparable the
results obtained by two experimenters that use samples with different
number of subjects? This question would quantify subjects sample
size-driven discrepancies between experimenters.

It would be very important in future work to explore how the CBF
variable could detect alterations in some pathologies like Alzheimer.
Also the study of anatomical/functional/CBF brain networks, by com-
bining structural MRI, fMRI, DWI and SPECT/PET neuroimaging tech-
niques in a same set of subjects would be tremendously useful to find
differences and similar properties of brain networks obtained by differ-
ent physiological cerebral variables. The used of Arterial Spin Labeling
(ASL) Neuroimaging modality would be useful to study the conver-
gence of the underlying network properties using BOLD and CBF phys-
iological variables. Finally, it would be interesting the use of other
association measures like ‘Euclidean distance’ to characterize different
aspects of the CBF co-variations between anatomical structures and its
brain topological organization.

Conclusion

Thiswork demonstrates the presence of non-randomorganization of
networks obtained fromCBFfluctuationsmeasured from SPECT Imaging
in brain resting state. Smallworld architecture in this kindof networks is
found, meaning there is an optimal balance between local specialization
and global integration in the brain. The CBF physiological variable could
be considered as a candidate variable to study the anatomical relation-
ship between different sites aswell as the network topology in brain pa-
thologies. The possible relation between patterns of axonal (anatomical)
and CBF connections is an issue that should be addressed in future
works. Our results highlight the importance of examining different
physiological variables to understand normal/aberrant networks prop-
erties in healthy and pathological brains.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.08.082.
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