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Autism is a highly varied developmental disorder typically characterized by deficits in reciprocal social
interaction, difficulties with verbal and nonverbal communication, and restricted interests and repetitive
behaviors. Although a wide range of behavioral, pharmacological, and alternative medicine strategies
have been reported to ameliorate specific symptoms for some individuals, there is at present no cure
for the condition. Nonetheless, among the many incompatible observations about aspects of the develop-
ment, anatomy, and functionality of the autistic brain, it is widely agreed that it is characterized by wide-
spread aberrant connectivity. Such disordered connectivity, be it increased, decreased, or otherwise
compromised, may complicate healthy synchronization and communication among and within different
neural circuits, thereby producing abnormal processing of sensory inputs necessary for normal social life.
It is widely accepted that the innate properties of brain electrical activity produce pacemaker elements
and linked networks that oscillate synchronously or asynchronously, likely reflecting a type of functional
connectivity. Using phase coherence in multiple frequency EEG bands as a measure of functional connec-
tivity, studies have shown evidence for both global hypoconnectivity and local hyperconnectivity in indi-
viduals with ASD. However, the nature of the brain’s experience-dependent structural plasticity suggests
that these abnormal patterns may be reversed with the proper type of treatment. Indeed, neurofeedback
(NF) training, an intervention based on operant conditioning that results in self-regulation of brain elec-
trical oscillations, has shown promise in addressing marked abnormalities in functional and structural
connectivity. It is hypothesized that neurofeedback produces positive behavioral changes in ASD children
by normalizing the aberrant connections within and between neural circuits. NF exploits the brain’s plas-
ticity to normalize aberrant connectivity patterns apparent in the autistic brain. By grounding this train-
ing in known anatomical (e.g., mirror neuron system) and functional markers (e.g., mu rhythms) of
autism, NF training holds promise to support current treatments for this complex disorder. The proposed
hypothesis specifically states that neurofeedback-induced alpha mu (8–12 Hz) rhythm suppression or
desynchronization, a marker of cortical activation, should induce neuroplastic changes and lead to nor-
malization in relevant mirroring networks that have been associated with higher-order social cognition.

� 2012 Elsevier Ltd. All rights reserved.
Introduction

Autism is a highly varied developmental disorder typically char-
acterized by deficits in reciprocal social interaction, difficulties
with verbal and nonverbal communication, and restricted interests
and repetitive behaviors. In the current Diagnostic and Statistical
Manual of Mental Disorders. 4th ed. (DSM-IV) [1], autism is consid-
ered the prototype for the category called pervasive developmental
disorders (PDD). Of the pervasive developmental disorders, autistic
disorder (AD), Asperger’s disorder, and pervasive developmental
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disorder not otherwise specified (PDD-NOS) are informally re-
ferred to as the autism spectrum disorders (ASD). ASD was once
considered to be of psychogenic origin but is now widely recog-
nized to be a developmental disorder involving genetic and envi-
ronmental factors and multiple functional brain networks.
Among the many incompatible observations about aspects of the
development, anatomy, and functionality of the autistic brain, it
is widely agreed that autism is a disorder of connectivity [2,3].

Epidemiological studies show that ASD prevalence rates have
been increasing in recent years, with current CDC reports indicat-
ing an average rate of about 1% (1/110), with increases of 8–17%
per year [4]. While only 68% of the increase can be attributed to in-
creased awareness and updated diagnostic criteria, the remaining
32% of cases represent a real increase in prevalence [5]. Although
a wide range of behavioral, pharmacological, and alternative
ions as a treatment for aberrant brain connections in children with autism.
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medicine strategies have been reported to ameliorate specific
symptoms for some individuals (for recent reviews see [6–8]),
there is at present no cure for the condition. With no clear biolog-
ical marker or risk factor associated with the onset of ASD, the
inherent heterogeneity of endophenotypical presentation makes
clinical management challenging.

In clinical studies, the most effective type of therapy for ASD is
behavioral intervention, with an efficacy rate of approximately 48%
[9–11]. Unfortunately, like most clinically validated therapeutic
approaches for ASD, behavioral therapy is time consuming and
costly for such a low potential benefit. Thus, alternative interven-
tions would be beneficial and warrant serious consideration. While
the precise mechanisms of neurofeedback (NF) are not yet well
understood, the evidence suggests it can capitalize on the implicit
plasticity of the brain to induce neural, functional, and ultimately
behavioral changes. Furthermore, with the use of quantitative elec-
troencephalography (qEEG) and specific NF protocols (e.g., ampli-
tude and coherence training) for individual subjects, NF can be
targeted to fit the heterogeneity of autistic symptoms. Therefore,
the present review uses promising observations from a variety of
sources to support the hypothesis that NF training is a viable treat-
ment option for autism.

Aberrant connectivity in the autistic brain

The numerous and diverse observations of structural abnormal-
ities in grey and white matter in the autistic brain (see Table 1)
have led many researchers to question the specific nature of this
apparent aberrant connectivity. The development of functional
connectivity magnetic resonance imaging (fcMRI) has largely sup-
ported initial observations about neural connectivity derived from
anatomical work. Initially studied by Biswal et al. [12], fcMRI mea-
sures synchronized fluctuations in BOLD signal activity that, by
inference, correlate with the connectivity of networks in the brain
[13,14]. Functional connectivity is based on the idea that cognitive
and social capabilities emerge from the collaborative activity of
large-scale cortical networks, operationally defined by the syn-
chronicity of their hemodynamic activity.
Table 1
The neuroetiology of autism spectrum disorder: anatomical markers.

Main finding

Increased head circumference; higher rates of macrocephaly
Increases in cerebral volume
Increases in frontal and temporal gray matter volume
Increased neuron counts and brain weight in prefrontal cortex
Gray matter increases in regions related to social cognition,

communication, and repetitive behaviors, as well as auditory and visual
perception

Decreases in parietal lobe volume
Lack of asymmetry in planum temporale volume
Increased cortical thickness in temporal and parietal lobes
Decreases in gray matter density in ventromedial aspects of the temporal

cortex
Cortical thinning in regions related to the mirror neuron system, emotional

recognition, and social cognition
Increases in local density and computation in cortical minicolumns
Increased white matter growth, especially in the prefrontal cortex and

cerebellum
Increases in the cerebral white matter specifically in the parietal, occipital,

and frontal lobes
Decreases in corpus callosum volume
Reduced fractional anisotropy in a variety of white matter regions,

especially corpus callosum, frontal, and temporal regions
Mean diffusion increases in various regions including corpus callosum,

arcuate fasciculus, and temporal areas
Increased connectivity volume between the superior temporal sulcus and

amygdala
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First described by Just et al. [15], the underconnectivity hypoth-
esis of ASD posits that ‘‘autism is a cognitive and neurobiological
disorder marked and caused by under functioning integrative cir-
cuitry that results in a deficit of integration of information at the
neural and cognitive levels.’’ Decreases in connectivity in ASD are
consistent across studies using various cognitive, emotional, and
social tasks [16–18]. While many fcMRI studies have used tasks
to demonstrate differences in cortical networks, other studies have
used an analysis of the ‘‘resting state.’’ This method examines
spontaneous fluctuations in hemodynamic activity that appear
even in the absence of task performance [19]. Networks that co-
activate during task performance often show high within-network
correlations of these spontaneous fluctuations even during rest.
Many studies show that these correlations are also reflected in
structural connectivity measures [20]. These findings support the
use of ‘‘resting state’’ connectivity as a proxy for task-related func-
tional connectivity, and in some cases structural connectivity. One
consistent finding of these resting state fcMRI studies is a corre-
lated network of regions thought to be involved in introspection,
daydreaming, or self-referential thought, commonly known as
the ‘‘default mode network’’ [21]. Activation in this network tends
to be negatively correlated with goal-directed networks [22].
Across studies, individuals with ASD demonstrate decreased rest-
ing state connectivity in the default mode network compared to
typically developing controls [23], as well as a reduced ‘‘switching’’
from this network to task-related networks during task perfor-
mance [24]. Still, a number of studies have amended the original
hypothesis, suggesting that while there may be reduced local con-
nectivity, there may actually be increased long-range connectivity
[25]. The discrepancies in many fcMRI findings and methodologies
have warranted several skeptical meta-analyses [3].

Nonetheless, the recent surge of papers on the topic of connec-
tivity in ASD make it clear that there is atypical or aberrant connec-
tivity, though it is too early to specify its exact nature. In a recent
host of both resting state and task-related fcMRI studies, a general
theory of a disordered connectivity has emerged [16,17,23,26–32].
As Müller et al. [3] point out, ‘‘Among the few neuroscientific find-
ings that appear solid are those of abnormal white matter growth
Method Representative publications

Anatomical measurements [143]
Magnetic resonance imaging (MRI) [144–146]
MRI [147]
Post-mortem anatomical analysis [148]
MRI [149]

MRI [150]
MRI [151]

[152]
MRI [147]

MRI [82]

Post-mortem anatomical analysis [153]
MRI [144,145]

Transverse relaxation time imaging [154]

MRI, Diffusion tensor imaging (DTI) [155,156]
DTI [34–36,157–159]

DTI [33,34,36]

fMRI, DTI [160]
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trajectories and impaired connectivity.’’ To bring some level of rec-
onciliation among these various studies, several investigators have
proposed a local overconnectivity-long range underconnectivity
hypothesis [32] that is supported by noisy local processing in mini-
columns [32] and reduced integrity in extensive white matter
tracts [33–36].
The neurofeedback hypothesis

Aberrant connectivity in the ASD brain, be it increased, de-
creased, or otherwise compromised, may complicate healthy syn-
chronization and communication among and within different
neural circuits, thereby producing abnormal processing of sensory
inputs necessary for normal social life. These anomalies in neural
connections could be responsible for the abnormal social behaviors
in children with autism. It is hypothesized that neurofeedback, an
intervention based on operant conditioning that results in self-reg-
ulation of the electroencephalogram produces positive behavioral
changes in ASD children and does this by normalizing the aberrant
connections within and between neural circuits. Thus, in order to
fully address the behavioral symptoms of ASD, it is crucial to
understand the gap between connectivity and cognition. Informed
by knowledge of the neural underpinnings associated with the so-
cial dysfunctions present in ASD, methods such as EEG have made
it possible to concurrently measure connectivity between brain re-
gions and corresponding behaviors and to remediate the problem.
The use of EEG biomarkers

It is widely accepted that the innate properties of brain electri-
cal activity produce pacemaker elements and linked networks that
oscillate synchronously or asynchronously, likely reflecting a type
of functional connectivity [37]. Although the periodicity of such
oscillations varies in distinct frequency bands as a function of neu-
ral architecture [38], consensus exists that at least three types of
oscillating relationships recorded as scalp EEG arise from cortex
[39–41]. First, in the columnar architecture of cortex, synchronous
activities are created locally between neighboring columns and
these ‘‘local’’ oscillations produce high frequency components
above 30 Hz, often labeled as gamma rhythms. Synchronization
in the gamma band has been proposed as a type of neural binding
mechanism that subserves perceptual and cognitive functions
[42,43]. Oscillations can also occur between cortical columns sep-
arated by a short distance (e.g., several centimeters). These inter-
mediate or ‘‘regional’’ oscillations appear to produce intermediate
frequency components such as high alpha/mu (10–12 Hz) and beta
components. Finally, oscillations develop between cortical regions
that are much further apart, such as frontal and parietal or occipital
and frontal cortices. These ‘‘global’’ oscillations are more closely
related to slower frequency band components, such as delta
(1–4 Hz), theta (4–8 Hz), and low alpha/mu (8–10 Hz). Various
types of oscillations can occur spontaneously as a function of
non-contingent firing in cellular networks, as part of thalamocorti-
cal re-entrant interactions and pacemaker cells that make up tha-
lamic nuclei, or as activity time-locked to extrinsic stimuli during
the processing of a task.

Resting state fcMRI findings have been replicated by a limited
number of qEEG studies that have also observed decreased resting
state connectivity. Similar to fcMRI, qEEG measures the synchro-
nicity of brain networks, but with less spatial precision and higher
temporal resolution. Using phase coherence in multiple frequency
bands as a measure of functional connectivity, studies have shown
evidence for both global hypoconnectivity and local hyperconnec-
tivity in individuals with ASD [44–47]. Several of these studies
have noted increased coherence in gamma frequency bands over
Please cite this article in press as: Pineda JA et al. Self-regulation of brain oscillat
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the parietal [44] and temporal lobes [48], suggesting increased lo-
cal connectivity. Likewise, Murias et al. [46] found locally elevated
coherence in the theta (3–6 Hz) frequency range in ASD subjects,
particularly over left frontal and temporal regions. Meanwhile,
there was lower coherence in the ASD subjects in the lower alpha
range (8–10 Hz) within frontal regions [46]. In a qEEG study with
20 autistic children, Coben et al. [47] found patterns of hypocoher-
ence in ASD, including decreased intrahemispheric delta and theta
coherences across short to medium and long inter-electrode dis-
tances. Children with ASD had lower interhemispheric delta and
theta coherences across the frontal region, and delta, theta and al-
pha hypocoherence was also evident over temporal regions. In pos-
terior regions, low delta, theta and beta coherence were observed
in children with ASD [47]. Thus, while these findings are diverse
and multifaceted, there is an emergent framework of local hyper-
connectivity and global hypoconnectivity in the autistic brain.

Although the characterization and specific nature of neural con-
nectivity in ASD is incomplete, awareness of the brain’s experi-
ence-dependent structural plasticity [49,50] suggests that these
abnormal patterns may be reversed with the proper type of treat-
ment [51,52]. Plasticity in this case refers to not only the changing
of synaptic strengths but to processes that contribute to the
homeostasis of network activity. Atypical fcMRI and qEEG results
may be the consequence of early aberrations of white matter
development and ‘‘disturbances in experience-driven network for-
mation through regressive and constructive processes, such as syn-
aptic pruning and stabilization’’ [3], and may therefore be
amenable to additional induction of plasticity.

Self-regulation of EEG oscillations

Of specific interest to neurotherapeutic interventions such as
NF is whether brain oscillations are causally implicated in brain
function, or whether they are simply epiphenomenological or by-
products of other, underlying mechanisms? Animal intracranial
recordings and human electrophysiology have shown that neural
oscillatory mechanisms are directly related to and play a critical
role in a number of cognitive functions including learning, mem-
ory, attention, feature binding and sensory selection and gating
[38,53,54]. However, less direct evidence exists on the effects,
whether short- or long-term, of the modulation or entrainment
of these oscillations and their relationship to brain plasticity [55].

As noted previously, brain oscillations are instantiated across
different spatial scales [38] from single pacemaker neurons [56],
to neuronal circuits [57], to re-entrant thalamo-cortical and large
scale cortico-cortical networks [58]. It is assumed that one of the
computational processes these oscillations enable is the dynamic
routing and gating of information through the synchronization of
various elements [59–61]. Indeed, multi-frequency synchronies
are thought to be critical for linking spatially distributed neuronal
assemblies into functionally integrated and specialized networks,
and shown to play a role in sensory registration [62], perceptual
integration [63], and selective attention [64]. From a computa-
tional perspective, the rhythmic stimulation of the oscillating neu-
ral population can be modeled as a periodic force acting in a certain
direction on the phase vector [65,66], while from a system level
perspective, EEG responses to sensory stimuli can partially be ex-
plained through transient, stimulus-induced adjustment of the
phase of ongoing oscillations via phase-resetting [67–69].

The possibility of volitional modulation or entrainment of these
oscillations raises an interesting set of questions. Is it possible to
promote/enhance or inhibit/suppress oscillations in distinct, neu-
ronal elements/networks in vivo via indirect ‘‘internal’’ signaling
similar to directly stimulating them (e.g., through transcranial
stimulation protocols)? In other words, can we modulate these
oscillations volitionally through some periodic internal input or
ions as a treatment for aberrant brain connections in children with autism.
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drive? Provided that these oscillations play a causal role for a spe-
cific cognitive function, it is at least theoretically plausible that
their modulation/entrainment can have a functional impact. A
brain computer interface, which allows real-time information of
brain activity to be fed back to a user by means of a computer in
a closed ‘neurofeedback’ loop, enables control and natural opera-
tion of brain oscillations across cortical networks in vivo and in real
time [70–72]. Although the specific aims of NF approaches differ,
most use a simple visual stimulus or game to train the individual
to increase/decrease a certain bandwidth of EEG signal. With train-
ing, most individuals can develop a remarkable level of control
over his/her brain oscillations. During NF, subjects are exposed to
the same visual/auditory feedback or reward stimuli, and hence
the entrained EEG differences most likely represent the modula-
tion of some internal or ‘background’ brain state(s) associated with
the event rather than to external factors.

The role of the mirror neuron system

The discovery of mirror neurons in monkeys and a Mirror Neu-
ron System (MNS) in the human brain has provided a neurobiologi-
cal substrate for understanding many key concepts in human social
cognition directly relevant to the behavioral and cognitive deficits
observed in ASD [73], including the ability to comprehend actions,
glean intentions, and learn through imitation. First described by
Rizzolatti and co-workers [74] in the macaque monkey, mirror
neurons are thought to be involved in both self-initiated action
and the representation of action performed by others. Neurons in
the pars opercularis of the inferior frontal gyrus (IFG) show in-
creased firing while executing and observing the same action, rep-
resenting a potential mechanism for mapping seeing into doing
[75,76]. It is well reported that individuals with ASD have marked
impairment in social skills, from joint attention to understanding
the intentions of others, often termed ‘‘mind-blindness’’ [77,78].
As has been noted in a number of recent reviews, deficits in MNS
activity may explain the poor socialization skills prevalent in the
disorder.

Although some studies have raised questions about the role of
mirror neurons in human social behavior [79,80], an increasing
amount of work suggests that a dysfunction in the MNS does con-
tribute to social deficits [81–86]. Specifically, deficits likely arise
from an inability to ‘‘form and coordinate social representations
of self and others via amodal or cross-modal representation pro-
cesses’’ [87] – the type of function ascribed to mirror neurons. A
particularly striking fMRI study by Dapretto et al. [84] demon-
strated decreased activation in the inferior frontal gyrus (pars
opercularis) in autistic individuals, and found that activity in this
region was inversely related to symptom severity in the social do-
main. Similarly, EEG studies (described in later sections) have
shown that putative electro-biomarkers of MNS activity show
abnormalities in ASD compared to typically-developing children
[83,86,88,89]. Despite the excitement generated by these observa-
tions, few if any investigations have focused on operationalizing
insights into MNS function towards practical solutions to the early
diagnosis and possible repair of MNS deficits in clinical disorders.

The MNS and mu rhythms

While functional hemodynamic studies have delineated areas in
the human brain that might act as analogs to the monkey MNS, di-
rect recording of neural activity by electromagnetic methods have
unveiled neural activation patterns correlated with mirroring. Par-
ticularly relevant are scalp-recorded EEG patterns of activity in the
alpha (8–13 Hz) and beta (15–25 Hz) range that are most evident
over the central region of the scalp overlying the sensorimotor
cortices and modulated by motor activity [90]. Traditionally these
Please cite this article in press as: Pineda JA et al. Self-regulation of brain oscilla
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patterns of oscillations have been labeled ‘‘mu rhythms’’ (reviewed
by [76]. The major characteristic of the mu rhythms is that they
reach maximal power in the absence of overt movements, when
the participant is at rest. In fact, mu rhythms are desynchronized
and their power reduced when a hand or a foot movement is pre-
pared, and disappears when the movement is actually performed.
Initially, these rhythms were considered to be the default rest state
of the brain (‘‘idling rhythms,’’ [76,91], present as part of the nor-
mal waking state. However, newer data showing different patterns
of event-related de-synchronization (ERD) and power suppression
have linked these phenomena with cognitive functions such as
memory [92–94], selective attention [95,96] as well as affect
[97–99]. Particularly relevant to this chapter is evidence for mu
suppression not only when participants perform movements but
also when they observe such movements [100–102]. During the
self-initiation, observation, or even imagination of action in typi-
cally developing individuals, the MNS network is active and power
in the mu rhythm is suppressed [90,101,103,104].

Indeed, the phenomenology of the mu rhythm resembles the
phenomenology of mirror neuron activity. Both are sensitive to
movement, as well as to motor and cognitive imagery (i.e., ob-
served meaningful actions). Their overlapping neural sources in
sensorimotor frontoparietal networks supports the argument that
they are related and involved in linking perception to action, which
may be a critical component in the development of social cogni-
tion. Mu rhythms appear to reflect the translation of ‘‘seeing’’
and ‘‘hearing’’ into ‘‘doing’’ [76]. This function requires the entrain-
ment of multiple domain-specific generators. These domains exhi-
bit synchronized and desynchronized activity in a locally
independent manner but become entrained when they are coher-
ently and globally engaged in translating perception into action
[76]. These patterns suggest a link between MNS and mu rhythms
and raise the possibility that brain mechanisms manifested by EEG
mu rhythms reflect social interaction, including imitation behavior
and theory of mind [105]. If so, it stands to reason that the modu-
lation of mu rhythms might be dysfunctional in ASD individuals
whose performance in these domains is impaired.

The integration of fMRI and EEG techniques during tasks that
activate the MNS have demonstrated that mu rhythm suppression
occurs in typical MNS regions, namely the inferior parietal lobe,
dorsal premotor cortex, and primary somatosensory cortex [105].
In autistic individuals this mu rhythm suppression is not observed,
supporting the role of an altered MNS in ASD [86,106]. Oberman
et al. [86] compared mu suppression in a group of 10 individuals
with high functioning ASD ranging in age between 6 and 47 years
with age-matched typically developing (TD) controls in four differ-
ent conditions: (a) performing a simple hand movement, (b)
observing a video showing the same hand movement performed
by the experimenter, (c) observing two balls bouncing, and (d)
observing visual white noise (as baseline). As expected, there was
no mu suppression for observing non-biological movement in
either group; both groups exhibited significant mu suppression
while performing the hand movement, but only in the TD group
was mu rhythm significantly suppressed in the observe-only con-
dition. These results provide evidence for a defective MNS associ-
ated with ASD and have recently been replicated by others [83].

Conclusions

The observations linking brain oscillations to function have
important implications for therapies of brain disorders associated
with abnormal cortical rhythms, particularly mu rhythms, and
support the use of EEG-based NF as a noninvasive tool for
establishing a causal link between rhythmic cortical activities
and their functions [107]. The proposed hypothesis is that neuro-
feedback-induced alpha mu (8–12 Hz) rhythm suppression or
tions as a treatment for aberrant brain connections in children with autism.
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desynchronization, a marker of cortical activation [108], should in-
duce neuroplastic changes in relevant networks. In contrast, beta
mu (12–15 Hz) synchronization, which has been associated with
cortical deactivation [109] and motor inhibition [110], might pro-
duce an opposite pattern. With knowledge of the brain’s inherent
plasticity and with mu suppression as a potential electrophysiolog-
ical marker of MNS activity, we can use EEG to train the brain to
develop volitional control over its waveforms, and by extension,
its functional connectivity.
Evaluation of the hypothesis

The treatment of epilepsy using NF training is arguably the
best-established clinical application of EEG operant conditioning
[110]. Sterman initially described an EEG oscillation with a fre-
quency of 12–20 Hz, similar to EEG sleep spindles, which has been
referred to as the ‘‘sensorimotor rhythm’’ or SMR [111]. During the
testing of a highly epileptogenic compound, Sterman and co-work-
ers found elevated seizure thresholds in cats that had previously
taken part in SMR conditioning, suggesting that the SMR training
had somehow predisposed the cats against experiencing seizures.
These findings have been successfully extrapolated to humans
where it has been documented that seizure incidence is lowered
significantly through SMR training [112]. SMR rhythms have been
shown to originate in the ventrobasal nuclei (nVB) of the cat thal-
amus [113], an area involved in the channeling of afferent somato-
sensory information to cortex. During conditioning, the firing
patterns of nVB cells shift from fast and non-rhythmic discharges
to systematic, rhythmic bursts that are associated with suppres-
sion of somatosensory information flow [113,114]. This reduction
causes the nVB cells to hyperpolarize. However, instead of sustain-
ing a stable level of inhibition, the cells begin to gradually depolar-
ize as a function of a slow calcium influx. This eventually causes
the nVB neurons to discharge a burst of spikes that is then relayed
to sensorimotor cortex and thalamic reticular nucleus (nRT) neu-
rons. Stimulation of the nRT leads to inhibition of VB relay cells,
returning them to a hyperpolarized state and initiating a new cycle
of slow depolarization producing rhythmic thalamocortical volleys
and consequent cortical EEG oscillations [115].

Consistent with the work by Sterman and co-workers, Ros et al.
[107] have shown that self-regulation of EEG rhythms in quietly
sitting, naive humans significantly affects the subsequent cortico-
motor response to transcranial magnetic stimulation (TMS), pro-
ducing durable and correlated changes in neurotransmission.
More specifically, the intrinsic suppression of alpha cortical
rhythms produced robust increases in corticospinal excitability
and decreases in intracortical inhibition of up to 150%, lasting more
than 20 min. Likewise, Hinterberger et al., [116] showed that brain
regulation of the slow cortical potential (SCP) to activate an exter-
nal device led to activation of specific brain areas. That is, a suc-
cessful positive SCP shift compared with a negative shift was
closely related to an increase in the BOLD response in the basal
ganglia. Successful negativity was related to an increased BOLD re-
sponse in the thalamus compared with successful positivity. These
results indicate learned regulation of a cortico-striatal-thalamic
loop modulating local excitation thresholds of cortical assemblies.

Finally, Beauregard and Lévesque [117] scanned 15 unmedi-
cated ADHD children randomly assigned to an experimental group
that received NF, and five other ADHD children assigned to the
control group who did not receive NF. Subjects from both groups
were scanned 1 week before the beginning of training and 1 week
after, while they performed a Counting Stroop task. Prior to train-
ing, the Counting Stroop task was associated with significant focus
of activation in the left superior parietal lobule for both groups but
no activation in the anterior cingulate cortex (ACC). Following
Please cite this article in press as: Pineda JA et al. Self-regulation of brain oscillat
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training, the Counting Stroop task was still associated with in-
creased activation of the left superior parietal lobule for both
groups, but for the experimental group only there was a significant
activation of the right ACC. The results suggest that NF training has
the capacity to normalize the functioning of the ACC in ADHD chil-
dren. These precedents for NF treatment suggest that it may also be
effective in modulating EEG signals associated with deficits in ASD,
particularly in the realm of social cognition.

Neurofeedback treatment for ASD

NF as a technique for modifying behavior has been used primar-
ily in clinical settings, and support for its efficacy is based largely
on case studies with only a few randomized, controlled, and
blinded studies. Nonetheless, a substantive amount of work sup-
ports the rationale for NF use in the context of treatment. As pre-
viously discussed, there is already evidence supporting the
efficacy of this approach for a variety of neuropsychological condi-
tions, including ADHD [118–120], epilepsy [121–125], traumatic
brain injury [126,127], anxiety [128], and substance abuse [129].

In terms of ASD, it is well recognized that more than 50% of indi-
viduals with ASD demonstrate significant electrophysiological
abnormalities on EEG [130–132]. Upwards of 30% develop clinical
seizures by adolescence, and even when clinical seizures have not
been identified, more than 50% show paroxysmal sharp discharges
on EEG, especially during sleep. Additional daytime EEG abnormal-
ities include altered spectral profiles, abnormal patterns of coher-
ence, and reduced mu rhythm activity. These observations have
led many clinical practitioners to use EEG-based interventions as
a therapeutic strategy.

Cowan and Markham [133] conducted one of the earliest case
studies of neurofeedback and autism. QEEG analysis on an eight
year-old high functioning female showed abnormally high alpha
(8–10 Hz) and theta (4–8 Hz) activity in the posterior regions of
the brain. Following more than 20 weeks of NF training, the child
showed improvements in sustained attention as assessed by the
Test of Variables of Attention (TOVA), decreased autistic behaviors,
such as inappropriate giggling, and spinning, and improved social-
ization based on parental and teacher assessments. Sichel [134]
also reported positive changes in all DSM-IV-R diagnostic criteria
for autism in a single case study. A few years later, two scientifi-
cally controlled studies reported significant reductions in autistic
symptoms following NF training. Jarusiewicz [135] reported an
average of 26% improvement (sociability (33%), speech/language/
communication (29%), health (26%), and sensory/cognitive aware-
ness (17%)) in the ATEC in 12 children diagnosed with autism com-
pared to 3% improvement in a control group. Coben and Hudspeth
(cited in [136]) studied 14 ASD children with significantly high lev-
els of mu rhythm activity and a lack of mu suppression during
observational activity. Participants were assigned to an interhemi-
spheric bipolar training or a coherence training group designed to
increase connectivity between central and peripheral frontal re-
gions via assessment guided NF. Both groups improved signifi-
cantly on neurobehavioral and neuropsychological measures, but
only in the coherence training treatment group was mu activity
significantly reduced. Increased coherence was associated with
diminished mu and improved levels of social functioning [137].

In a series of two experiments, Pineda et al. [138] examined
whether neurofeedback could lessen abnormal mu rhythms and
behavioral outcomes in 27 children with high functioning autism.
In the first study, eight ASD males were randomly assigned to an
experimental or placebo group. NF training included 30 sessions
of 30 min each with rewards for mu-like activity (8–13 Hz) and
inhibits for EMG (30–60 Hz). The ATEC showed changes (9–13%)
in two of the four experimental participants. In the second study,
19 children with verified high functioning ASD were randomly
ions as a treatment for aberrant brain connections in children with autism.
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assigned to an experimental or placebo group. NF training was
similar to study one except the reward band was now 10–13 Hz
(or high mu band). Parent ratings showed a significant reduction
in symptoms as measured by the ATEC Total score, although there
was an increase in ratings of Sensory/Cognitive Awareness in ex-
cess of 40% that did not occur in the placebo control group, sug-
gesting that participants improved in some areas and regressed
in others.

Coben and Padolsky [136] used assessment guided NF on 37 pa-
tients over the course of 20 sessions to reduce hyperconnectivity in
posterior-frontal to anterior-temporal regions. Following NF, par-
ents reported symptom improvement in 89% of the experimental
group, with very little change in the control group. Improvement
also occurred in the areas of attention, visual perceptual function-
ing, language, and executive functioning, with a 40% reduction in
core ASD symptoms as assessed by the ATEC total scores. There
was also decreased hypercoherence in 76% of the experimental
group as measured by a post-training qEEG. The results suggest
that decreased hyperconnectivity could have produced the positive
changes in treatment outcomes.

In more recent studies, Kouijzer et al. [139] reported positive re-
sults of NF training in children with ASD compared to a waiting list
control group. Treatment consisted of 40 sessions of neurofeedback
and included inhibition of theta activity (4–7 Hz) and rewarding
low beta activity (12–15 Hz) over the right hemisphere. It was
hypothesized that this induced change in EEG-power would en-
hance activation of the ACC, which has been found to be under acti-
vated in ASD individuals [23]. Consistent with this hypothesis, NF
training revealed a linear decrease in theta power and an increase
in low beta power over 40 sessions. In the treatment group, there
was significant improvement on tasks of executive functioning in
the treatment group for attention control, cognitive flexibility,
and planning. Measures of social behavior revealed significant
improvements in general and non-verbal communication in the
treatment but not the control group. Furthermore, parents of chil-
dren in the treatment group reported more improvement in levels
of social interaction, communication, and typical behavior. A fol-
low-up after 12 months revealed maintenance of the described
outcomes on both executive functioning and social behavior, sug-
gesting that NF treatment can have long-term effects.

All in all, anecdotal reports, as well as clinical and controlled
scientific studies suggest that NF approaches can lead to symptom
improvement [140]. Additional randomized and controlled studies
are needed to establish ‘‘best practices’’ for NF and determine the
optimal set of protocols. Recently, Coben and Meyers [141] com-
pared the results of two published controlled NF studies examining
whether a symptom based approach or an assessment/connectivity
guided based approach was more effective. Both methods demon-
strated significant improvement in symptoms of autism, but con-
nectivity-guided neurofeedback showed a greater reduction on
various subscales of the ATEC. Overall, children with autism who
successfully reduce delta and theta power through NF therapy
have shown improved cognitive flexibility, enhanced social and
communicative skills, executive set-shifting functions, and a gen-
eral decrease of theta power, all of which were maintained long
after post-treatment.

Consequences of the hypothesis and discussion

It is hypothesized that operant conditioning methodology, such
as NF, produces its behavioral and electrophysiological effects by
gaining access to and control over regulatory mechanisms that in-
crease or decrease synchronous or desynchronous activity in brain
networks. This assumes that the cortex works in terms of resonant
loops and that such functional resonances operate spontaneously
or are driven by cellular pacemakers. Oscillations in the network
Please cite this article in press as: Pineda JA et al. Self-regulation of brain oscilla
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project strong afferent volleys to cortical targets, which could re-
sult in a cascade of motor alterations enhanced by long-term
potentiation [142]. Furthermore, these changes are stabilized and
consolidated over time affecting function beyond the neurofeed-
back context. Thus, NF is believed to influence, among other things,
thalamic pacemakers and consequently thalamocortical reso-
nances. Long-term consequences of this change in activity could
induce changes in the patterns of connectivity between different
brain regions and ultimately generalized and noticeable improve-
ments in behavior. Primarily a disorder of connectivity, autism is
a very suitable target for such treatment.

In a recent review of the literature, Coben et al. [137] argued
that while further research is necessary, the variety of studies
using neurofeedback in autism support a Level 2 determination
(‘‘Possibly efficacious’’) for the application of neurofeedback for
autistic disorders. Nonetheless, it must be acknowledged that a
number of limitations characterize many of the NF studies in the
field. Given the heterogeneity of ASD, the use of single case studies
and small group sizes reduces statistical power. Group studies pro-
vide stronger support but there is a pressing need for proper use of
random assignment, appropriate control groups, and more blinded
protocols to control for placebo effects. Replication by multiple
independent laboratories is crucial to establish efficacy, as is the
correlation between behavioral changes and functional/structural
changes in the brain. Equally important is the need to resolve the
discrepancies in outcome measures used, as well as address EEG
spatial limitations, perhaps through the use of and comparison
with magnetoencephalography- and fMRI-based NF. There is also
the clear necessity of delineating common ASD comorbidities,
namely ADHD and OCD. Finally, it is important to extend the reach
of NF treatments to address the multiple core symptoms of autism
– not just social dysfunctions, but also emotional regulation, lan-
guage problems, and repetitive behaviors. While discrepancies in
methodology and outcome measures make comparison between
studies difficult, ameliorating these differences will lead to a stron-
ger understanding of NF’s efficacy and potential. Our hope is that a
continued commitment to overcoming these experimental limita-
tions and challenges will ultimately help establish neurofeedback
as a beneficial treatment for children and parents dealing with this
difficult disorder.
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