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Abstract 

This paper uses mathematical modelling and simulations to explore the dynamics that 

emerge in large scale cortical networks, with a particular focus on the topological 

properties of the structural connectivity and its relationship to functional connectivity.  

We exploit realistic anatomical connectivity matrices  (from diffusion spectrum 

imaging) and investigate their capacity to generate various types of resting state 

activity. In particular, we study emergent patterns of activity for realistic connectivity 

configurations together with approximations formulated in terms of neural mass or 

field models. We find that homogenous connectivity matrices, of the sort of assumed in 

certain neural field models give rise to damped spatially periodic modes, while more 

localised modes reflect heterogeneous coupling topologies. When simulating resting 

state fluctuations under realistic connectivity, we find no evidence for a spectrum of 

spatially periodic patterns, even when grouping together cortical nodes into 

communities, using graph theory. We conclude that neural field models with 

translationally invariant connectivity may be best applied at the mesoscopic scale and 

that more general models of cortical networks that embed local neural fields, may 

provide appropriate models of macroscopic cortical dynamics over the whole brain. 

 

Introduction 

This paper is about modelling the dynamics in large scale brain networks with both 

realistic and analytic connectivity matrices. It focuses on the large scale structure of 

cortical dynamics and considers the effect of heterogeneities in connectivity in terms of 

the relationship between structural and functional connectivity (Zhou et al., 2006; Honey et 

al., 2007). The study of anatomical connectivity in the human brain – in parallel with the 

spatiotemporal activity of resting state networks – has attracted significant attention 

during recent years, e.g. (Smith et al., 2009; Biswal et al., 1995; Arieli et al., 1996; Damoiseaux et 

al., 2006; Vincent et al., 2007). Despite the inherent structure of this activity being well – 

known (engaging the posterior cingulate, precuneus, lateral parietal and elements of the 

prefrontal cortex), an understanding of how anatomical connectivity produces brain 

dynamics at various temporal and spatial scales is only partial. This is, in part, due to the 

lack of detailed biophysical data as well as computational power, both of which have 
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only recently become available.   In the past ten years, a wealth of data from tracing 

studies has revealed the complexity of anatomical connections in the macaque brain, 

while an aim over the next few years is to provide a full description of the connectivity 

of the human brain – the “connectome” (Biswal et al., 2010; Sporns et al., 2005). 

 Here, we use anatomical connectivity matrices and focus on the implications that their 

form might have for the dynamical repertoire of resting state activity and how this 

activity could be modelled. We assume that anatomical connectivity will predict certain 

aspects of functional connectivity (defined as the correlations among activity in 

different parts of the brain), and the dynamics of resting state activity; in other words, 

we assume that the dynamics of the resting state reflects some inherent aspect of 

anatomical connectivity. Our agenda was to establish the sorts of dynamics that could 

be seen under particular forms of anatomical connectivity and to relate them formally 

from basic principles.  

Before detailed connectome data were available, simplifying assumptions about the 

connectivity needed to be made to study the network dynamics on the full brain scale. 

These assumptions included the translational invariance of the connectivity commonly 

referred to as homogeneous (e.g. Jirsa and Kelso, 2000). In particular for the temporal 

domain these assumptions proved to be powerful (Jirsa and Haken 1996,1997; 

Robinson et al 1997), but naturally suffered when applied to the spatiotemporal 

domain. The symmetry present in the connectivity expressed itself as a constraint 

imposed upon the emergent brain dynamics. This led researchers to the proposal to use 

tractographic data as a connectivity skeleton of network models for the exploration of 

neural dynamics on the full brain scale (Jirsa et al., 2002). Here we were interested in 

exploring these connectivity constraints systematically. To address this, we use 

simulations to verify theoretically motivated characterisations of resting state dynamics 

and then use these characterisations to see whether homogeneity assumptions were 

justified when using realistic (DSI) connectivity matrices. 

Our theoretical analyses focus on fixed-point attractor networks, where self-sustained 

oscillations are precluded (Jirsa and Ding, 2004) and, by definition,  the network dynamics 

depend only upon the anatomical or structural connectivity matrix. This matrix allows 

us to express the dependence of spatiotemporal dynamics, arising from the collective 
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activity over the network nodes, in terms of a few sufficient modes, which correspond to 

the dominant patterns of cortical activity observed at rest.  To allow for some 

mathematical treatment, we simplify the mean field formulation of Brunel and Wang 

population to a stable fixed-point attractor absorbing both effects of excitatory and 

inhibitory activity. Attractor networks have been demonstrated to show non-oscillatory 

instabilities for excitatory coupling with random connection topology and constant 

identical time delay for all couplings (Jirsa and Ding 2004, Feng et al 2006). There are 

currently no results available extending this work to multiple time delays. For our 

purposes, we focus on the (sub)set of non-oscillatory solutions arising at instabilities.  

This assumption does not exclude complex dynamics within a population as 

demonstrated by Brunel and Wang (2001) who considered mean fields of populations 

of spiking neurons based on the integrate-and-fire neuronal model.  It is the mean field 

of the population activity that demonstrates the attractor state, which is the level of 

description chosen here. This result generalizes to more complex situations under 

certain conditions on the dispersion of neural activity and noise (Assisi et al 2005; 

Stefanescu and Jirsa 2008; Jirsa 2007). In short, our focus is on fixed-point solutions of 

mean field formulations of Brunel and Wang neuronal populations. Noise induced in a 

population of spiking neurons will change the spiking dynamics, but the mean field will 

have a particular constant value as long as all other characteristics stay the same and 

this noise is small.   Jirsa & Ding showed that inhibition is crucial in order to generate a 

delay-induced oscillatory instability for the network. However, this result holds only for 

random connectivity and when delay is the same across the whole network. 

Our paper follows a series of studies focusing on the relationship between the structural 

properties of the brain and the nature of dynamics on brain networks. In particular, we 

take up the themes motivated by a graph theoretical approach to complex systems 

(Watts and Strogatz, 1998; Newman, 2003). This approach started with the paper of Watts 

and Strogatz – who studied the anatomical connectivity of C. elegans. Graph theory has 

been used to delineate significant traits of neuroanatomical networks (He and Evans, 2010; 

Stam and Reijneveld, 2007), such as their small-world architecture and derive measures 

that can be associated with dysfunction (Ponten et al., 2007; Schindler et al., 2008). 

Furthermore, graph theory has been used to identify plausible brain systems in a mind-

wandering state, often called a default mode network, e.g. (Buckner et al., 2008; Raichle et 
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al., 2001).  Recent research has also focused on describing pathological brain states by 

associated graph theoretical measures, reflecting clinico-pathological processes (Bassett 

and Bullmore, 2009; Guye et al., 2010) and has used neural fields to analyse large scale 

cortical networks (Robinson et al., 2009; Gray and Robinson, 2007, 2009; Robinson et al., 2008; 

Gray et al., 2009; Henderson and Robinson, 2011) and neural masses to model local sources 

(Jansen and Rit, 1995; Van Rotterdam et al., 1982; Lopes da Silva et al., 1974) or construct  

neurocognitive networks (Dhamala et al 2007).  We here focus on notions such as 

community structure, to motivate similar  approximations of translational invariance 

(Deco et al., 2008; Breakspear et al., 2006; Robinson et al., 2003; Amari, 1977; Coombes, 2010; 

Wilson and Cowan, 1972) and consider the role of inhomogeneities in producing 

endogenous brain dynamics. As pointed out by a reviewer, there is a huge literature on 

the analysis and interpretation of fields in the physics literature - ranging from optics 

and electromagnetics to acoustics and quantum fields. Also, it is well known that 

localized modes will be produced by inhomogeneities (e.g., impurities in condensed 

matter), and that translation-invariant systems will have plane eigenmodes (this goes 

back to Nother in the early 1900s, see e.g. (Bloch, 1929)). Our focus is on 

heterogeneities of the sort assumed in neural field theory and whether they have a 

similar effect as “matrix impurities”. For instance, in condensed matter physics, 

impurities act only locally which is different from the combination of long-range 

interactions and local homogeneous kernels we consider here. 

This paper comprises three sections: In the first, we discuss the anatomical data that 

form the basis of our investigation and introduce some notions from graph theory that 

we will use to characterise inhomogeneities in realistic and analytic connectivity 

matrices. In the second, we formulate cortical dynamics in terms of an integro-

differential equation, thereby providing an analytical characterisation of resting state 

activity; that is dominated by eigenmodes of the connectivity matrix. We also consider a  

homogeneity approximation to the connectivity matrix; namely, we replace a sparse 

connectivity matrix by translationally invariant coupling (modelling lateral interactions 

on the cortical sheet), and provide a mathematical explanation for the emergence of 

damped spatially periodic patterns. In the third section, we turn to numerical 

investigations and study the emergent dynamics from various connectivity 

configurations and exemplar matrices. We demonstrate the relationship between graph 

theory measures of clustering and principal eigenmodes. In addition to our focus on 
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symmetric (undirected) connectivity matrices, we also discuss the importance of 

asymmetries and coherent fluctuations, such as those observed in resting state fMRI by 

exploiting connectivity configurations including short range excitatory and inhibitory 

effects. Finally, we used the theoretical predictions to assess the adequacy of 

translationally invariant connectivity matrices to explain the principal patterns of 

activity associated with realistic anatomical connections. 

 

Large scale brain networks 

The analysis of large connectivity datasets, using graph theory, considers brain 

networks as weighted graphs, whose nodes represent cortical sources of measurable 

activity and whose edges correspond to anatomical connections. Each of these edges 

can be associated with a number corresponding to the weight that characterises the 

strength of the relevant connection; for example, as obtained through tracing studies.  

These weights then form a matrix, which describes anatomical connectivity. 

 

Diffusion spectrum imaging matrix 

We use an anatomical connectivity matrix denoted by  obtained via diffusion spectrum 

imaging (DSI) and white matter tractography (Hagmann et al., 2008). This matrix consists 

of 66N  nodes representing both hemispheres of the human brain (see Figure 1).  

Figure 1. Neuroanatomical Connectivity Matrix obtained by human DSI data. Different 
colours depict connectivity strengths between 0 and 1.  
 

The matrix entries   are the corresponding connection weights that range from 0 to 1 

(in an arbitrary scale) and are based on tract density. The upper left and lower right 

quadrants represent intrahemispheric connections. Elements of a band structure in this 

matrix reflect prominent fibre-tracts connecting homologous regions in the two 

hemispheres. Since the DSI technique yields non-directional connections . With 

each entry  we can associate two regions  and   corresponding to source and 

target regions respectively. We will denote the space spanned by all such regions by W, 
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namely . The matrix  can be represented as a function in a two-

dimensional space , where the variables  and  parameterise the location of 

target and source regions respectively, assuming, for simplicity, one-dimensional 

cortical manifolds. 

 

Optimal community structure, modularity and clustering coefficient 

Here, we briefly review certain notions from graph theory, used in this paper, that have 

proven very useful for a quantifying brain network topology. For the evaluation of 

graph theoretic quantities we used the Brain Connectivity Toolbox (Rubinov and Sporns, 

2010) , (see also Ghosh et al., 2008; Honey et al., 2007). First, we consider the clustering 

coefficient: this was introduced in (Watts and Strogatz, 1998) and is defined as the ratio 

of all extant connections between a node’s neighbours divided by all possible such 

connections. It is based on a partitioning of a graph into triangles that serve as basic 

motifs of network structure and can be expressed by the formula formula a a a  . In 

the latter formula, 1 12 ( 1)a a a ap p where  and a ap are the degree of and the 

number of triangles attached to a node a respectively and a   is the average intensity of 

triangles at this node. For more details, we refer the reader to (Onnela et al., 2005). The 

(local) clustering coefficient indicates the embeddedness of a single node, in terms of 

the nodes to which it is connected. Later, we examine the ability of the (local) clustering 

coefficient to predict patterns of resting state dynamics; in particular the eigenmodes of 

cortical activity. 

Another widely-used graph theoretical metric is modularity, which characterizes the 

organization of a complex network into sub-modules or communities; these are 

distinguished by a high degree of connections between nodes of the same module, in 

comparison with the degree of connections of these nodes to network elements outside 

this module, reflecting a natural segregation within the network (Newman 2003). 

Modular organization has been assumed to indicate groups of anatomically or 

functionally associated nodes that work together to achieve behavioural functions with 

some degree of independence. Modularity (functional segregation) endows the network 

with flexibility so  that it can adapt one community (functionally segregated neuronal 
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system) without affecting others that subserve other specific functions, see e.g. 

(Boccaletti et al., 2006) . In mathematical terms, modularity is evaluated  in terms of a cost 

function (Newman and Girvan, 2004) expressing the number of edges falling within a 

community minus their expected number in a random network 

2

a a

a

C ,  

where a is the fraction of edges in the network that link communities  and a . 

Newman and colleagues realised that values of 0.3C indicate a significant community 

structure and proposed an efficient algorithm for optimising C over all possible 

subdivisions of a network. An optimal community structure of the network is obtained 

by its division into several communities, so that the number of edges within the same 

community is maximised over all communities, while the number of between –

community edges is minimised. In this paper, we use the reordered connectivity 

matrices depicted in the right column of figure 2,that juxtapose nodes from the same 

community,  to establish the existence of local (homogenous) cliques that may conform 

to homogeneity assumptions (see below). We consider symmetric Toeplitz matrices 

involving inhomogeneous connections and their reordered versions according to 

optimal communities. We note that the latter versions favour the appearance of block 

structures around the main diagonal and motivate a reordering of the realistic DSI 

matrix to which we will come back later (please see top right panel of figure 9). In the 

last section, we will also use these matrices to exemplify the relation between resting 

state activity, anatomical modes and graph theoretical measures. 

 

 

Summary 

In summary, this section has introduced the basic notions of connectivity matrices or 

kernels that define a graph theoretic representation of anatomical coupling between 

cortical regions in the brain. We have introduced the notions of clustering and optimal 

community structure. These reflect the tendency of nodes to cluster together and the 
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modularity of that clustering respectively. In what follows, we will examine the sorts of 

dynamics that might be expected for any given anatomical connectivity or graph: 

 

Figure 2: Exemplar connectivity matrices(left column) and their reordered versions in 

terms of optimal communities(right column). Matrices in the left column are diagonal-

constant and symmetric and can be considered as perturbations to the matrix depicted in 

the bottom of the left column(exponential synaptic footprint) which is a standard matrix 

used in neural field theory; these matrices include both a translationally invariant part 

(around the main diagonal) and inhomogeneous two-point connections. Jirsa(2009) has 

shown that such matrices can be provide a general formulation of neural field dynamics 

including both local homogeneous and long-range heterogeneous coupling. The matrices of 

the right column motivate a reordering of the realistic DSI matrix considered later that 

allows assessing homogeneity assumptions for whole-brain dynamics (see last section). In 

the bottom panel, we see an example of a translationally invariant connectivity matrix  

with  This kernel is called an exponentially synaptic footprint and has 

often been used in the literature to account for excitatory and inhibitory interactions. 

 

 

Cortical dynamics and anatomical connectivity kernels 

In this section, we introduce the mathematical formalism for describing neural 

dynamics on anatomical connectivity structures. We employ an integro-differential 

form for cortical activity following neural field theory (Jirsa & Haken 1996, 1997; Gray and 

Robinson, 2007, 2009; Robinson et al., 2008, 2009) . We then briefly motivate equilibrium 

solutions of the ensuing dynamics, in which we can ignore conduction delays. This 

allows us to use standard linear stability theory to link fluctuations in resting state 

activity to the underlying anatomical connectivity, in terms of patterns or eigenmodes of 

the anatomical connectivity. Finally, we examine the special case of neural field models 

in which anatomical connectivity is homogeneous and examine some of the spatial 
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characteristics of resting state fluctuations that would be anticipated under this 

approximation. 

 

An integro-differential equation for cortical dynamics 

Following the theory of neural fields with constant coefficients in continuous media, we 

consider the connectivity kernel   as a scalar function in a two-dimensional 

Euclidean space. This allows us to describe the propagation of activity in large cortical 

networks via an integro-differential equation. In this formulation, the connectivity 

kernel  is often of a particular homogeneous or translationally invariant 

(stationary) form. It should be emphasised that the differential formulation of neural 

fields with constant coefficients in continuous media only applies when   has a 

homogeneous form1 . Jirsa (2009) describes a general form of a neural field theoretical 

equation and splits it into two components, one with a translationally invariant kernel 

characteristic for local coupling and one with a translationally variant kernel for long 

range coupling. The general theory of neural fields involves an integro-differential 

equation prescribing the time evolution of cortical activity at a certain location and time 

point. It assumes that activity at time  at a location x is characterised by some quantity 

 representing e.g. average depolarisation and simply says that this activity 

evolves as a result of postsynaptic filtering (with decay constant ) of afferent input, 

 

( ) ( , ) ( ( ))( , )     t q x t H f q x t x W                                                (1) 

                                                                  

where  is incoming activity to point of a region  at time  from all 

regions connected to it and is given by  

 

                                                           
1
 Other variants include inhomogeneous approaches to neural field theory, see e.g. (Bressloff, 2003; Jirsa and 

Kelso, 2000). 
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                                                                (2) 

 

Here  denotes input obtained after passing the activity of an afferent (source) 

population  through a sigmoid nonlinearity ,  and  are an 

effective gain and firing threshold respectively, which summarize ensemble features of 

the source population.  

Equation (1) is the deterministic version of the well-known Amari neural field equation 

(Amari, 1974). For our numerical analyses below, we used its stochastic version based 

on the following Langevin equation 

 

1/2( , ) ( , ) ( ( ))( , )dq x t q x t H f q x t w                                     

The function w   is a spatially uncorrelated Wiener process: 

( , ) 0

( , ) ( , ) ( ) ( )a b a b

w x t

w x t w y t x y t t
                                                                                               

where is a small number so that noise is low. 

It should be noted that equation (1) lacks any explicit propagation delays; and is 

formally equivalent to a system of coupled oscillators.  The advantage of employing an 

integral formalism will become apparent in the next section,  when we will discuss the 

relation between resting state activity and dominant patterns of structural connectivity. 

However, time delays associated with signal transmission cannot, in principle, be 

omitted in any serious stability analysis of the brain network’s dynamics. There are 

though some special cases, in which delays may be ignored: first, the existence of the 

equilibrium solutions that are independent of time delays. The linear stability of 

networks with equilibrium solutions is generally not independent of time delays, unless 

we consider only networks with fixed-point attractors, see for instance (Deco et al., 2009). 

(Jirsa & Ding, 2004) have shown that fixed-point networks with a common time delay 

and random connectivity display two types of bifurcations, an oscillatory and non-
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oscillatory instability. The latter occurs for purely excitatory connections and is not 

restricted to random matrices but applicable to all connectivity configurations. We here 

focus on dynamics arising from matrices including purely excitatory connections where 

the non-oscillatory instability is independent of the time delay (under the assumption of 

a single delay discussed above) . 

 

The repertoire of resting state activity and eigenmodes 

In this section, we show that the repertoire of resting state activity is spanned by the 

eigenmodes of the anatomical connectivity matrix. Assuming that fluctuations around 

the resting state result in transient non-Turing patterns, namely patterns that decay 

back to the resting state with an associated Lyapunov exponent λ – and substituting 

  into equation (2), we obtain an eigenvalue equation 

 

                                                                                                                (3) 

 

where the operator F is given by  and the firing rate function has been 

approximated with a linear function of the gain of the sigmoid function above: in all 

subsequent discussion, without loss of generality, we assume  . This implies 

that cortical activity at rest is given by a superposition of eigenmodes of the operator H. 

Assuming a decomposition of the connectivity matrix  in terms of its eigenmodes 

denoted by   

 

                                                                                             (4) 

 

and that (without loss of generality)  ,  we find that   for all   

Therefore, the (eigen) spectrum of the anatomical connectivity matrix identifies 
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the dynamics of cortical activity at rest, see also (Ghosh et al., 2008; Deco et al., 2009, 2010). 

The set of eigenmodes with the smallest real eigenvalues correspond to those patterns 

in the space W that will be seen during transient fluctuations around the resting state. In 

other words, these are the patterns that decay most slowly following a perturbation; the 

remaining patterns (eigenmodes) dissipate almost immediately(Robinson et al., 1997, 

2001) . The rate at which the system returns to its resting state after a perturbation is 

characterised by the corresponding eigenvalue with an associated time constant: 

 

                                                                                                                              (5) 

where the   - th eigenvalue  is given by 

 

                                                                                                     (6) 

The key thing to notice here is that, in the resting state, most structural modes will 

decay rapidly to zero and their contribution to resting state dynamics will be negligible. 

In particular, the resting state solution will be dominated by the first few eigenvalues 

and the corresponding modes will reveal those anatomical patterns that predominate in 

patterns of resting state fluctuations. This provides a rationale for reducing the 

dimension of the solution at resting state by ignoring higher order modes: put simply, 

the results above mean that we can express neuronal activity as a mixture of patterns or 

modes, where these modes can be derived from any given anatomical connectivity 

matrix or kernel (as its eigenvectors ). Furthermore, we only need to consider a small 

number of patterns that are associated with small (negative) eigenvalues, because these 

unstable modes will dominate the dynamics. 

 

An approximation of translational invariance 
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Realistic connectivity DSI matrices such as the matrix of figure 1, are usually quite 

sparse and reflect a high degree of inhomogeneity in cortical connections2. However, 

translationally invariant matrices  with a characteristic spatial decay of lateral synaptic 

densities have often served as a first approximation to  e.g. (Nunez, 1995; Jirsa and 

Haken, 1997; Breakspear et al., 2006; Robinson et al., 1997), see the bottom panel of figure 2 for 

an example of such a matrix.  

As mentioned above, an  approximation of a large scale connectivity matrix with a 

translationally invariant matrix has often been used to describe cortical activity.  This 

amounts to replacing the realistic connectivity kernel in Equation (1) by a parsimonious 

analytic approximation of the sort used in the differential formulation of neural field 

models in continuous media.  Dynamics resulting from such an approximation will, of 

course, differ from realistic resting state dynamics: even if we choose the nonlinearity in 

equation (2) carefully, so that both the realistic as well as the homogenous network 

have the same fixed-point solution; neglecting inhomogeneities in the connectivity 

results in omitting important features of cortical activity.  

However, it may be the case, at least locally, that the real connectivity can be considered 

translationally invariant. Furthermore, community structure could provide a way of 

identifying local homogeneity in realistic connectivity matrices. In particular, a 

reordering of the connectivity matrix to reveal community structure, generally 

produces block-structures and discloses local cliques (see figure 2). The existence of 

these communities is potentially important because they can be used to motivate the 

assumption of a translationally invariant connectivity matrix: namely, that the 

regions across which activity propagates form a one-dimensional manifold on which 

local synaptic connection density decays in a homogenous fashion (e.g. exponentially). 

In other words, the underlying assumption is that each node in the network is connected 

to its neighbours by means of an exponentially decaying synaptic density. Cortical activity 

will then propagate across the cortical network, induced by  successive excitations of 

neighbouring regions as a result of local diffusion. 

                                                           
2
 It should be noted that sparseness does not necessarily imply inhomogeneity and these two terms 

capture different aspects of connectivity. Also, the work of anatomists such as (Braitenberg and Schüz, 
1998) has revealed that the connection kernel in the cortex exhibits strong homogeneity traits. Also, 
(Henderson and Robinson, 2011) has shown that highly nonuniform-looking connection matrices, even 
with high modularity measures, can result from completely homogeneous connectivity in 2D. 
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In what follows, we adopt an assumption such as the one described above, to consider 

the nature of spatiotemporal dynamics that would arise within a single community or 

clique: 

 

Translationally invariant connectivity yields spatially periodic activity  

In what follows, we will limit ourselves to homogeneous or translationally invariant 

connectivity matrices that can give rise to spatially periodic activity; such an 

approximation restricts the dynamical repertoire of resting state activity to decaying 

spatially periodic patterns, something that could preclude localised dynamics3; a theme 

to which we return in the next section. Conversely, spatially periodic patterns do not 

necessarily imply a periodic connectivity matrix and in fact appear as a result of local 

diffusion. We show that the eigenmodes of a large class of translationally invariant 

matrices are damped patterns characterized by spatial periodicity (see also (Robinson, 

2006) ) and later confirm our results through numerical simulations.  

Assuming that ( , )x y x y  is a function of the spatial separation of cortical 

sources and considering perturbations around a fixed-point, we take the Fourier-

Laplace transform of equation (1), see e.g. (Jirsa and Haken, 1996; Pinotsis and Friston, 2011; 

Grindrod and Pinotsis, 2011), 

 

( ) ( , ) ( ) ( , ),Q k K k F k        ,  k                                                             (7) 

 

                                                           
3
 Localized modes can appear as a result of superposed damped spatially periodic modes. This is possible 

in theory (see e.g. Dunford and Schwartz, 1988), but in real world situations it is difficult to realize, as a 
fully localized solution would require the interference of many correctly phased modes. 
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where, for notational clarity, we will use lower case letters for time-varying quantities 

and upper case latter for their transform, namely ( , )Q k  is the Fourier-Laplace 

transform of the depolarisation 

 

0

( , ) ( ( , ))

( , ) ikx t

Q k FLT q x t

dx dtq x t e
                                                                                                 (8) 

 

( ), ( , )K k F k are the Fourier and Fourier-Laplace transform of the connectivity kernel 

and depolarization-firing function  and ( )( , )f q x t  respectively.  As a general 

illustrative example of  translationally invariant connectivity matrices, we now consider  

matrices with a Fourier transform of a rational form4(see also (Robinson, 2006)) 

 

                                                                                      (9) 

 

A widely used connectivity kernel with a rational Fourier transform, the so-called 

exponential synaptic footprint (Jirsa and Haken, 1996)     

depicted in figure 2 (bottom), with Fourier transform   

 

                                                                                                               (10) 

 

Using equations (9) and  (7), the nonlocal integro-differential equation (1) reduces to a 

local partial differential equation (PDE) of the following general form 

                                                           
4
 It can be shown that this class includes functions in a space spanned by exponential polynomials, namely 

functions of the form 
1 ir xjx e  (for examples see  Abramowitz and Stegun, 1972). 
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1 1

1

( ' ' ... ( ' ' ...) ')

( ' ' ... ') ( )

m m m m

x t x t x x

n n

x x

a q

A B f q
                       (11) 

 

where   and x t denote partial derivative operators with respect to  and  

respectively. The constants ', ',...and ', ',...a A B are uniquely defined in terms of the 

constants  , ,...and , ,...a AB  after multiplying both sides of equation (7) by the 

denominator of the right hand side of equation (9) and taking the inverse Fourier-

Laplace transform and are constrained by the requirement that the resulting solution 

decays back to a steady-state. A particular instance of equation (11) can be obtained 

using the expression  (10). It turns out that  and there is no frequency dependence 

in the observed dynamics. The physical regime where this approximation is valid 

includes very low frequencies. This conforms to our prior assumption about focusing on 

the (sub)set of non-oscillatory solutions arising at instabilities. The exponential synaptic 

footprint has often been used in the literature to allow the application of standard 

techniques in PDE theory to be used in the analysis of neural fields; since, in the 

presence of delays, it gives rise to wave equations that describe electrical activity 

propagating on the cortex5, e.g. (Beurle, 1956; Freeman, 1972; Wilson and Cowan, 1972; 

Amari, 1974; Nunez, 1995; Jirsa and Haken, 1996; Robinson et al., 2003; O’Connor and 

Robinson, 2004; Breakspear et al., 2006; Coombes et al., 2007). In this case, Equation 

(11) reduces to 

 

( / ) ( )t xx t xxe g g e q f q                                                                             (12) 

 

where the constants e and g are defined in terms of and . Letting ( / ) ,t g e q p  

Equation (12) becomes ( 1) ( )xxe p f q , which is the limit of a wave equation 

describing propagation of afferent input p when delays are neglected, see e.g (Jirsa, 2009; 

                                                           
5
 For limitations of such equations, see (Bojak and Liley, 2010). 
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Pinotsis et al., 2012). The function ( )f q  appearing in Equations (11) or (12) drives this 

afferent input and q in this function denotes the depolarization of the source region or 

population. It is well known that solutions to linear partial differential equation with 

constant coefficients such as equations (11) or (12), can be expressed as superpositions 

of periodic modes   whose wavenumbers  can be obtained from the 

corresponding dispersion relation (for a relevant discussion see Pinotsis and Friston, 

2011). This relation prescribes the spectral responses of the brain networks and – for 

the case of an abstract network described by the general equation (11) – reads  

 

       

                                (13) 

where   is the gain associated with the depolarization-firing rate function. For 

the case of an exponentially decaying synaptic density, Equation (13) yields 

 

2 2( ) 0k h                                                                                             (14) 

 

which has roots 
1 1

12 ( ) 1k h . This gives rise to two modes, propagating in 

opposite directions with the same decay rate . Combining Equation (13)  with the 

fundamental theorem of algebra we conclude that – in the general case of a connectivity 

of the form of Equation (9) – fluctuations around the resting state will be a 

superposition of m  damped modes (Robinson et al., 1997, 2001), whose wave numbers are 

determined by the connectivity parameters prescribed by the relevant dispersion 

relation – namely Equation (13). 

 

Summary 
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In summary, network activity at resting state resulting from a translationally invariant 

connectivity matrix of the general form of (9) (and under the assumption of fixed-point 

dynamics of mean field formulations), could exhibit spatial periodicity6 consisting of 

damped spatially periodic modes with wave numbers corresponding to roots of (13). In 

other words, to the extent that homogenous coupling can be assumed over the cortical 

manifold (or a local cortical clique), resting state fluctuations should conform to cortical 

activity with spatial periodicity and scale determined uniquely by the extent and density 

of lateral anatomical connections. Clearly, the extent to which this is true depends upon 

the degree to which lateral connectivity is actually homogenous and the size of the 

cortical manifold relative to this connectivity. In the final section, we look at the failures 

of the homogeneity assumption using numerical solutions to the equations above. 

 

A phenomenological characterisation of emergent dynamics 

In this section, we first focus on patterns emerging from perturbations around the 

resting state and the eigenmodes associated with each connectivity kernel. We will 

relate these eigenmodes to the (graph theoretic) clustering coefficient over nodes. We 

consider connectivity configurations for general inhomogeneous or homogenous 

connectivity configurations and investigate the correspondence between the associated 

functional and structural connectivity. We conclude with an analysis of non-symmetric 

(directed) connectivity and, in particular, a simulation of resting state activity using 

realistic (DSI) connectivity matrices. Our objective here was to look for evidence of 

damped periodic modes in communities of nodes, identified using graph theory, of the 

sort that would motivate the application of homogenous approximations to the 

connectivity of large-scale cortical dynamics. 

 

The resting state, principal modes and clustering coefficient 

By configuring the connectivity parameters so that each fixed-point network 

approaches the verge of instability, we integrate the neural field equation (2)  with 

white noise input  until an equilibrium state is reached to provide a plausible solution 

                                                           
6
 But see footnote 3. 
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for resting state dynamics. For each simulation we assumed random initial and zero flux 

boundary conditions and scaled the connectivity matrix to ensure that at least one (real 

part) eigenvalue approached zero – this ensured realistic dynamics that did not 

dissipate quickly and can be considered a form of organised criticality. We solved 

equation (1) using an integrator scheme with time bins of   0.01 s, where the resting 

time series comprised of 2001 samples. The spatial discretization of the matrices with 

an analytical form is the same as for the DSI matrix.   When taking eigenmodes of the 

exemplar connectivity matrices of figure 2, we find – as expected from the Centre 

Manifold Theorem outlined in the previous section – that the principal eigenvector 

coincides with the principal resting state pattern (modulo a phase difference of  

depending on the sign of the principal eigenvector). The principal eigenmode of the 

(simulated) resting state activity was numerically evaluated by simply integrating the 

system to a steady state solution. In principle, this furnishes the same mode as the first 

eigenvector of the sample covariance or functional connectivity matrix (because this 

mode dominates the sample fluctuations). This covariance matrix corresponds to the 

functional connectivity matrix. This similarity confirms the theoretical predictions of 

the previous section – suggesting that there is a close correspondence between the 

eigenmodes of anatomical connectivity and the dominant modes of dynamics that result 

from fluctuations around an equilibrium solution. Below, we evaluate clustering 

coefficients and other graph theoretic measures for both simulated and realistic (DSI or 

CoComac) matrices. Similarly to the case of DSI matrices where each entry contains a 

value corresponding to the strength of connections between two regions obtained 

through white matter tractography, the corresponding values for the simulated matrix 

of figure 3 are given by the function   where x and y are the 

coordinates corresponding to regions x and y (and the ordering of the regions follows 

the DSI matrix of fig 1). 

Crucially, we observed that the eigenmodes of the anatomical connectivity matrix are 

very similar to the pattern of (local) clustering coefficients associated with the 

connectivity kernel (see figure 3). Recall that the local clustering coefficient reports the 

degree of embeddedness of any particular node in its cluster or community. This result 

should come as no surprise, if we consider that the integro-differential equation, we 

used to simulate activity, describes a series of identical microscopic oscillators 
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connected to each other: for homogeneous or random initial conditions, we expect that 

resting activity will be dominated by oscillators that are densely interconnected and 

form local (highly embedded) cliques.  In short, assuming that delays do not alter the 

stability properties of the system considered here, the underlying anatomical structure  

(expressed in terms of the clustering coefficient)  determines the patterns of 

fluctuations in the resting state. 

 

Figure 3: Exemplar anatomical connectivity matrices (first column),   resting state  (second 

column),  principal eigenvector of anatomical connectivity (third column), and clustering 

coefficient of anatomical connectivity (fourth column).  

 

Localised eigenmodes versus the neural field approximation 

We now focus on the eigenmodes of connectivity configurations formulated in terms of 

inhomogeneous or translationally invariant matrices. We here confirm the analysis of 

earlier sections by performing numerical simulations: as predicted, translationally 

invariant matrices that underlie certain neural field models have a full spectrum of 

damped spatially periodic patterns (see figure 4). On the other hand, eigenmodes tend 

to be more localized as the degree of inhomogeneity increases. We destroyed the 

homogeneity by introducing two-point local connections, namely the off-diagonal 

connections in figure 5. This results in the appearance of bumps (localized activity) in 

the dominant mode depicted at the right bottom corner of this figure. 

Figure 4: Full spectrum of periodic modes for a translationally  invariant and symmetric 

connectivity matrix and corresponding eigenvalues (above  each plot). Notice the 

dominant mode at the right bottom corner resembling the mode at the bottom of figure 3. 

 

 

 Figure 5: Symmetric connectivity matrix with two-point local connections and 

corresponding eigenvectors  and eigenvalues (above each plot).   
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 Non-symmetric connectivity matrices 

We here include a discussion of anatomical connectivity matrices of the sort found in 

the CoCoMac database(Stephan et al., 2001). This important database contains data 

from numerous tracing studies of the macaque brain and includes connectivity matrices 

that retain directionality features. These matrices are non-symmetric and comprise 

excitatory long range and excitatory and inhibitory short range connections. Cortical 

networks characterized by non-symmetric connectivity can exhibit an oscillatory and a 

non-oscillatory instability, the former depending critically on time-delays (Jirsa and 

Ding, 2004). We examined the impact of directed connections by repeating the 

numerical simulations described above but using an asymmetric anatomical 

connectivity: 

As in the symmetric case, resting state activity can show strong similarities with the 

principal eigenmode and, as expected, fluctuations around an oscillatory instability 

correspond to a complex-valued mode. In other words, the introduction of asymmetries 

into the connectivity matrix – in the form of local (reciprocal) excitatory and inhibitory 

connections depicted as red ( 0ij
) and blue ( 0ij

) two-point connections in figure 6 

respectively – results in the appearance of complex eigenvalues and eigenmodes 

describing oscillatory cortical activity (see figure 6). Interestingly, the appearance of a 

complex principal eigenmodes results in a spatial segregation of coherent activity; 

namely, the imaginary part of the eigenmodes corresponds to a second cortical clique 

that oscillates at the same frequency with the clique that corresponds to the real part, 

but with a phase difference of   In other words, for the connectivity configuration 

of figure 6, resting state activity, dominated by the mode in the top left panel, involves 

regions that oscillate with a constant lag (see e.g. areas 6 and 14 in the bottom 

panel).This could provide a simple and elegant explanation for characteristic phase 

differences in coherent  fluctuations observed in resting state fMRI (Biswal et al., 1995).  

On the other hand, the eigenmodes of translationally invariant but non-symmetric 

connectivity matrices  do not show this behavior and are, as expected, similar to the 
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periodic modes seen under homogenous symmetric coupling (see figure 7). The 

corresponding eigenmodes are now complex (due to lack of symmetry) with real and 

imaginary parts resembling the eigenmodes of  symmetric matrices biased towards part 

of the eigenspace as one may see by comparing figures 4 and 7. 

 

Figure 6 (upper left:) Connectivity matrix involving homogeneous and short range two 

point connections (excitatory and inhibitory). (right:) Corresponding eigenvectors where 

the real and imaginary parts are depicted in blue and red respectively. The relevant 

eigenvalue is depicted at the top of each panel.  (lower left:) Areas 6 and 14 oscillate with a 

phase difference of   

 

Figure 7 (left:) Non-symmetric connectivity matrix with traits of translational invariance.  

(right:) corresponding eigenvectors. 

 

The DSI matrix 

Our final simulations attempted to discover any evidence that would support the 

assumptions of homogenous lateral connectivity using the DSI anatomical connectivity 

matrix described in the first section. The idea here was that by expressing the principal 

eigenmodes over nodes that have been reordered to reveal their community structure, 

we might find evidence for fluctuations dominated by damped spatially periodic modes 

of the sort predicted under locally homogenous connectivity. As expected, a reordering 

of the DSI connectivity matrix motivated by the reordered versions of the exemplar 

matrices of figure 2,  juxtaposes nodes belonging to the same communities  and reveals 

band structures around the main diagonal7. The corresponding eigenmodes exhibit a 

small amount  of spatial periodicity, however  they do not constitute evidence for a 

spectrum consisting of periodic patterns (see figure 8). 

                                                           
7
 It should be noted that a band structure around the main diagonal is exactly what is expected when a totally 

homogeneous 2D cortex is labeled with 1D raster-ordered labels, see also (Robinson, 2012). 
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Figure 8: DSI matrix (top left), its reordered version to reveal optimal communities (top 

right) and corresponding eigenmodes and eigenvalues (bottom). 

  

Conclusion 

This computational work has used integro-differential equations to model cortical 

dynamics under homogenous and inhomogeneous assumptions about anatomical 

connectivity. This form of model suggests that the eigenmodes of resting state activity 

(under local linear stability assumptions) should conform to the eigenmodes of the 

underlying anatomical connectivity. As expected, when this anatomical connectivity is 

homogeneous (or translationally invariant) the resulting modes consist of damped  

spatially periodic patterns. Numerical simulations confirmed these analytic results, 

showing that inhomogeneous connectivity destroyed such modes otherwise dominating  

resting state fluctuations. When using real (DSI) anatomical connectivity matrices, we 

found a similar absence of a spectrum of patterns of increasing spatial periodicity that 

would be predicted under homogeneity assumptions for fixed point mean field 

dynamics. This suggests that assumptions of translational invariance for such dynamics 

are probably not appropriate for modelling large-scale cortical activity, even when local 

communities or cliques can be identified with graph theory measures. 

Clearly, the analyses in this paper may be too simple to completely dispense with the 

adoption of homogeneity assumptions for whole-brain or cortical dynamics. For 

example, we have only considered translational invariance in one dimension and 

excluded oscillatory mean field dynamics; however, equivalent invariances over the two 

dimensions of the cortical sheet may provide a more plausible model of endogenous 

fluctuations at resting state (Peter Robinson – personal communication) and can also 

give inhomogeneous correlations (Robinson, 2006,2012;Coombes,2007). Having said 

this, the results of our analysis speak to the adoption of general models of cortical 

networks that allow for arbitrary inhomogeneous coupling. Indeed, our current work on 

large stochastic dynamic causal models pursues this direction. One might then ask; what 

is the role of neural field theory in neuroimaging?  

One compelling answer is that the local (mesoscopic) dynamics associated with 

(macroscopic) cortical sources  (for either EEG or fMRI)  may be usefully modelled with 
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neural fields with constant coefficients in continuous media. In other words, generative 

or dynamic causal models of empirical data could comprise graphs where each node is, 

itself, such a neural field. The fundamental advantage of this sort of model is that the 

dynamics at each node can now be parameterised in terms of lateral connections (the 

neural field connectivity kernel). In this case, neural fields will provide local 

spatiotemporal dynamics where input to and output from each node will be considered 

independently of other nodes. Note that in this application of neural field theory, the 

spatial part of the spatiotemporal dynamics does not have to be observed directly – the 

neural field model simply provides a spatial model to explain observed temporal 

dynamics in the time or frequency domain. Future work using both invasive and non-

invasive electrophysiology will illustrate the utility of neural field theory in this 

empirical setting. 
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